Do global output gaps help forecast inflation in Russia?

Sophie Saul

Research and Forecasting Department Central Bank of Russia

February 17, 2022

Overview

Key goal

assess the role of global output gap in forecasting CPI in Russia.

General approach

- pairwise comparison of domestic and global Hybrid New Keynesian Phillips curve specifications in terms of their
 - 1. Root Mean Square Error
 - 2. absolute error at each date of out-of-sample forecasts
- robustness to model specification and the choice of proxies for global and domestic output gaps

Globalisation and inflation: some intuitive channels

Rogoff (2003):

"globalization - interacting with deregulation and privatization - has played a strong supporting role in the past decade's disinflation."

Bean (2006):

```
globalisation \Rightarrow competition and outsourcing in world labour market \Rightarrow decreased wage bills \Rightarrow inflation \downarrow OR
```

 \Rightarrow cheapening imports \Rightarrow income effect \Rightarrow domestic spending $\uparrow \Rightarrow$ *inflation* \uparrow

Globalisation and the Philips curve as the policymakers' research agenda (Bean, 2006; Fisher, 2006; Kohn, 2006; Yellen, 2006; Yellen and Gang, 2008; White, 2008)

Introduction

Globalisation and inflation: literature

• "Global gap matters"

Panel studies: Borio and Filardo (2007), Forbes (2019), Jašová, Moessner, Takáts (2020), Manopimoke et al (2015), A. Auer, Levchenko, and Sauré (2019) (*industry-level*) VAR: Bobeica and Jarocinski (2017)(EU and US), Milani (2009) (US),

• "Global gap useless"

Panel studies: Ball(2006), Ihrig et al. (2010), Mikolajun and Lodge (2016) Single country study (Poland): Łyziak (2019)

Specifications of the Philips curve in the literature

Borio and Filardo (2007) (panel study)

$$\pi_t - \pi_t^{trend} = c + \gamma^{dom} gap_{t-1}^{dom} + \gamma^{world} gap_{t-1}^{world} + \sum_{i=1}^n \delta_i external_{i,t-1} + \epsilon_t$$
(1)

Mikolajun and Lodge (2016) (panel study)

$$\pi_{t} = \alpha + \beta \pi_{t}^{e} + \gamma^{dom} gap_{t}^{dom} + \gamma^{world} gap_{t}^{world} + \sum_{i=1}^{n} \delta_{i} external_{i,t} + \epsilon_{t}$$
(2)

Łyziak (2019) (Poland study)

$$\pi_t = \alpha + \beta \pi_t^e + \gamma^{dom} gap_t^{dom} + \gamma^{world} gap_t^{world} + \epsilon_t$$
(3)

Methodology

Methodology: my specifications

The family of specifications

$$\pi_{t+h} = \alpha + \sum_{i=1}^{l+h} \beta_i^{inf} \pi_{t+h-i} + \sum_{i=1}^{l+h} \beta_i^{exp} \pi_{t+h-i}^{e} + \sum_{i=1}^{l+h} \beta_i^{\pi imp} \pi_{t+h-l}^{imp} + \sum_{i=1}^{l+h} \gamma_i^{dom} gap_{t+h-i}^{dom} + \sum_{i=1}^{n} \delta_i ext_{i,t-1} + \epsilon_t$$

• only complete lag polynomials

Methodology: assessment of forecast improvement

All analysis is based on the comparison of pairs

Formation of pairs

$$\begin{aligned} \pi_{t+h} &= \alpha + \sum_{i=1}^{l+h} \beta_i^{inf} \pi_{t+h-i} + \sum_{i=1}^{l+h} \beta_i^{exp} \pi_{t+h-i}^{e} + \sum_{i=1}^{l+h} \beta_i^{\pi imp} \pi_{t+h-l}^{imp} + \sum_{i=1}^{l+h} \gamma_i^{dom} gap_{t+h-i}^{dom} \\ &+ \sum_{i=1}^n \delta_i ext_{i,t-1} + \sum_{i=1}^{l+h} \gamma_i^{glob} gap_{t+h-i}^{glob} + \epsilon_t \end{aligned}$$

• total number of models = number of domestic models \times number of global gap measures \times maxlag

Methodology: estimation using OLS on 2002 Q2 - 2020 Q2

- Expanding window one-step-ahead forecast from 2009 Q4
- Rolling window one-step-ahead forecast
 - □ from 2007 Q2 (20 obs. length)
 □ from 2009 Q4 (30 obs. length)
 □ from 2013 Q3 (45 obs. length)

Methodology: assessment of forecast improvement

Graphical analysis:

- the distributions of RMSE, computed in an expanding window starting from 30 obs, model re-estimated at each step
- the distributions of models' errors in time

Regressional analysis:

- Romer and Romer (2000) test a nested simplified version of Diebold-Mariano test
- dummy regressions of the models' errors on the models' variables to single out each one's marginal contribution

Domestic data

- Inflation (π_t) SA quarter-on-quarter CPI
- Inflationary expectations (π_t^e) survey of entrepreneurs by the Bank of Russia ¹.
- Imported inflation (π_t^{imp}) HP-filter gap of real broad effective exchange rate ².
- Domestic output gap (gap_t^{dom})
 - \Box HP-filter GDP gap
 - $\hfill\square$ Cargo index
 - □ Capacity utilisation
 - PMI Composite Russia

¹http://old.cbr.ru/dkp/surveys/inflation ²https://fred.stlouisfed.org/series/RBRUBIS

Measures of the global output gap

- 1. **OECD gap** interpolated from annual to quarterly using cubic splines (as in the literature)
- 2. Trade-weighted gap (à la Borio and Filardo (2007)).

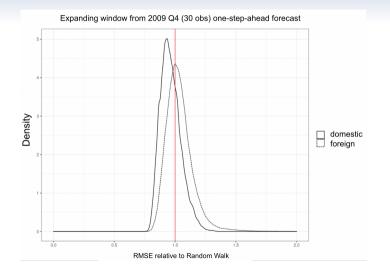
$$rrade \, gap_t = \sum_{i=1}^{countries} w_{it} gap_{it}^{real \; GDP \; HP \; filter} \tag{4}$$

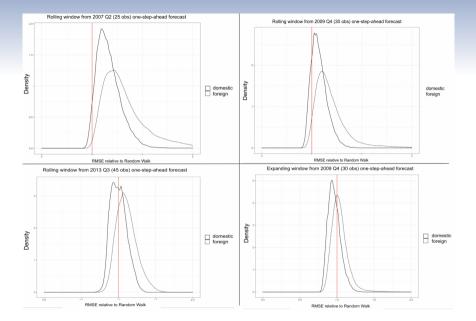
- 3. Kilian Index of Global Economic Activity³ derived from global bulk dry cargo shipping rates a proxy for the volume of shipping in global industrial commodity markets
- 4. Baltic Exchange Dry Index (BDI) ⁴ proxy for dry bulk shipping stocks as well as <u>a general shipping market</u> bellwether

³https://www.dallasfed.org/research/igrea ⁴https://www.bloomberg.com/guote/BDIY:IND

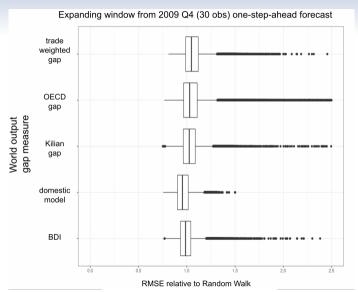
Data

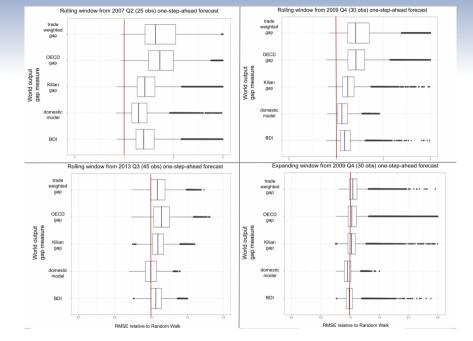
Trade gap composition: annual share used for each quarter

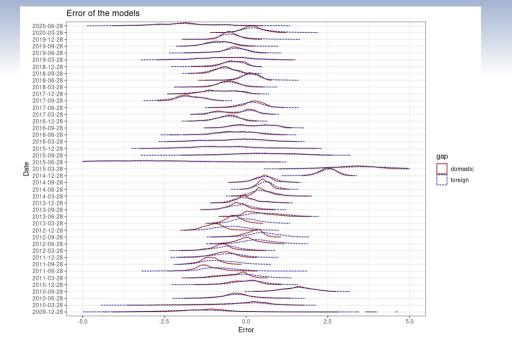

trade partner	average share of trade			
	2002-2008	2009-2015	2016-2019	2002-2019
China	13,69%	11,91%	12,03%	13,95%
Germany	10,33%	12,28%	9,87%	12,63%
Netherlands	9,25%	14,16%	21,80%	10,99%
Italy	9,33%	8,30%	5,69%	8,12%
Belarus	8,43%	6,53%	2,98%	7,07%
Ukraine	7,91%	6,14%	7,24%	6,48%
Turkey	5,16%	5,58%	5,24%	5,34%
US	4,10%	5,09%	4,50%	5,26%
Japan	4,79%	4,38%	4,07%	4,57%
Poland	5,27%	5,04%	5,61%	4,47%
France	4,52%	3,53%	3,19%	4,05%
Kazakhstan	4,19%	3,80%	4,06%	4,01%
UK	4,28%	4,05%	3,63%	3,84%
Korea	4,38%	3,11%	2,92%	3,76%
Finland	2,77%	4,10%	4,89%	3,56%
Belgium	1,59%	1,98%	2,29%	1,90%


Conventional global variables apart from the global gap

Conventional global variables such as those commonly encountered in open-economy Philips curves. My choice of measures:


- □ Urals oil price
- □ Bloomberg Commodity Index (BCOM)


Total RMSE: domestic vs global, expanding from 2009 Q4



RMSE by gap type: expanding from 2009 Q4

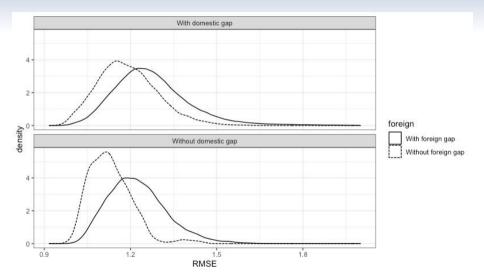
Results

Romer and Romer test

Used by Łyziak (2019), suggested by Faust and Wright (2013) as a simple version of Diebold Mariano for nested models

$$(e_t^{domestic})^2 - (e_t^{global})^2 = \alpha + \epsilon_t$$

$$H_0: \alpha = 0$$
 (5)


Results of Romers' test

The highest proportion of the global models that significantly outperform the domestic ones was 4.8 % for the case when

- global gap: BDI AR(3)
- commodities measure: Urals oil price
- domestic output gap: PMI Russia

Which is 100 models in total.

Total RMSE: gap or no gap?

If not the gap, then what? Dummy regression method of predictor analysis

The dummy regression

$$RMSE = \alpha + \sum_{i=1}^{l+h} dummy_{i}^{inf} \gamma_{i}^{inf} + \sum_{i=1}^{l+h} dummy_{i}^{exp} \gamma_{i}^{exp} + \sum_{i=1}^{l+h} dummy_{i}^{\pi imp} \gamma_{i}^{\pi imp} + \sum_{i=1}^{l+h} dummy_{i}^{glob} \gamma_{i}^{glob} + \epsilon_{t}$$

Best predictors according to the dummy regression

predictor	coefficient	
conscient utilization AP(2)	0 000*** (0 000)	
capacity utilisation $AR(2)$	-0.023*** (0.002)	
capacity utilisation AR(3)	-0.046*** (0.002)	
capacity utilisation AR(4)	-0.023*** (0.002)	
real effective exchange rate (HP-filter gap) AR(2)	-0.008*** (0.001)	
expectations $AR(1)$	-0.040*** (0.001)	
expectations AR(2)	-0.034*** (0.001)	
Observations	325,125	
R^2	0.983	
Adjusted R ²	0.983	
Residual Std. Error (df = 325072)	0.169	
F Statistic (df = 53; 325072)	352,747.600***	

Dummy regression results when controlled for the forecast date

predictor	coefficient	
capacity utilisation AR(3)	-0.002(0.004)	
real effective exchange rate (HP-filter gap) AR(2)	-0.016*** (0.004)	
expectations AR(1)	-0.046*** (0.004)	
Observations	13,980,375	
R ²	0.780	
Adjusted R ²	0.780	
Residual Std. Error	$0.606 \; (df = 13980257)$	
F Statistic	$419,497.700^{***}$ (df = 118; 13980257)	

Conclusion and key findings

Do global output gaps improve CPI forecast accuracy?

- Overall, they worsen it. Yet in some years and some specifications they do improve it.
- Domestic output gaps worsen forecast accuracy, except for the capacity utililsation measure.
- Inflation expectations, real effective exchange rate gap, and capacity utilisation improve it, even in the times of crises, when the errors of all models increase dramatically.