### «Математический анализ-2»

Лектор: Кострикин И.А.

Семинаристы (список уточняется, в зависимости от количества групп): Анно Е.И., Демушкина О.И., Клачкова О.А., Кострикин И.А., Кочергин А.В., Любкин А.А., Ромашова В.М.

Отчётность: Три письменные работы и две микроконтрольные.

## Тема 1. Точечные множества в *m*-мерном пространстве

Конечномерное евклидово пространство, *m*-мерная окрестность, проколотая окрестность. Понятие внутренней точки множества, граничной и внешней точек, границы множества. Понятие изолированной точки. Понятие открытого множества. Понятие сходящейся последовательности точек *m* - мерного пространства. Связь с покоординатной сходимостью. Теорема Больцано - Вейерштрасса о выделении сходящейся подпоследовательности. Два определения предельной точки множества (на языке окрестностей и последовательностей), их эквивалентность. Понятие замкнутого множества. Понятие пути, линейно связного множества. Понятие ограниченного множества.

### Тема 2. Функции нескольких переменных, их непрерывность

Понятие функции нескольких переменных. Область определения и область изменения функции. Множество уровня. Бесконечно малые функции, их связь с понятием предела. Ограниченные функции. Теоремы о пределах. Понятие непрерывной функции. Два определения непрерывности (по Коши и по Гейне), их эквивалентность. Свойства непрерывных функций. Непрерывность сложной функции. Первая и вторая теоремы Вейерштрасса. Теорема Больцано - Коши.

### Тема 3. Производные и дифференциалы функций нескольких переменных

Первые частные производные. Понятие дифференцируемой функции нескольких переменных, понятие дифференциала. Две формы записи нелинейного слагаемого. Связь дифференцируемости с непрерывностью. Необходимое условие дифференцируемости, единственность дифференциала. Достаточное условие дифференцируемости. Производная по направлению и вдоль вектора. Градиент. Формулы производной по направлению и вдоль вектора для дифференцируемой функции. Производная по направлению, касательному к линии уровня. Свойства градиента. Теорема о дифференцируемости сложной функции. Инвариантность формы первого дифференциала. Касательная плоскость к графику функции нескольких переменных, геометрический смысл дифференциала. Понятие частной производной порядка выше первого. Достаточные условия равенства смешанных производных. Полные дифференциалы высших порядков. Понятие *п* раз дифференцируемой функции в точке. Достаточное условие того, что функция *п* раз дифференцируема в точке. Формула Тейлора с остаточным членом в форме Пеано и Лагранжа (без доказательства).

### Тема 4. Классические методы оптимизации

Понятие локального экстремума. Необходимое условие локального абсолютного экстремума первого порядка. Квадратичные формы: характерные графики. Необходимое условие экстремума второго порядка. Достаточное условие (второго порядка) локального абсолютного экстремума и его отсутствия. Постановка задачи условной оптимизации с одним ограничением. Функция Лагранжа и множители Лагранжа для задачи на условный экстремум. Необходимое условие условного экстремума (геометрическая идея доказательства). Исследование с помощью линий уровня и градиентов. Достаточные условия условного экстремума. Доказательство простого варианта. Задача глобальной оптимизации. Экономическая интерпретация множителей Лагранжа.

### Тема 5. Теорема о неявной функции (понятия и формулировки)

Понятие функции, заданной неявно. Примеры однозначного и неоднозначного локального решения уравнения f(x,y)=0. Теорема о неявной функции для случая одного уравнения с двумя переменными (идея доказательства). Геометрическая и аналитическая интерпретации теоремы о неявной функции. Касательная к линии уровня функции. Линеаризация уравнения, приближенное решение нелинейного уравнения. Вычисление дифференциала неявной функции.

# **Тема 6. Неопределенный интеграл. Примеры простейших дифференциальных уравнений: с разделяющимися переменными и линейных**

Лемма о функциях, имеющих одинаковую производную на интервале. Понятие первообразной функции. Понятие неопределенного интеграла, его свойства. Таблица интегралов. Замена переменной в неопределенном интеграле и интегрирование по частям. Теорема о разложении правильной рациональной дроби в сумму простейших. Интегрирование рациональной дроби. Интегрирование тригонометрических выражений, универсальная тригонометрическая подстановка. Интегрирование простейших иррациональных функций.

# Тема 7. Определенный интеграл

Понятие интегральной суммы. Понятие определенного интеграла Римана. Необходимое условие интегрируемости функции по Риману. Понятие верхней и нижней сумм Дарбу. Простейшие свойства сумм Дарбу. Формулировка критерия интегрируемости. Примеры его применения. Понятие равномерно непрерывной функции. Формулировка теоремы Кантора о равномерной непрерывности непрерывной функции. Интегрируемость непрерывной функции. Интегрируемость ограниченной функции. Интегрируемость ограниченной функции, имеющей конечное число точек разрыва. Свойства определенного интеграла, связанные с подынтегральной функцией, с отрезком интегрирования и выражаемые неравенствами. Теоремы о среднем значении. Непрерывная зависимость определенного интеграла от переменного верхнего предела. Производная интеграла по переменному верхнему пределу. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле, ее геометрический смысл. Формула интегрирования по частям для определенного интеграла. Вычисление площадей и длин дуг кривых.

# Тема 8. Несобственные интегралы

Несобственные интегралы первого и второго рода. Критерий Коши сходимости несобственного интеграла. Абсолютно и условно сходящиеся несобственные интегралы. Примеры. Признаки сходимости и расходимости несобственных интегралов. Эталонные интегралы.

### Тема 9. Кратные интегралы

Определение двойного интеграла по прямоугольной области. Определение двойного интеграла по произвольной области. Необходимое условие интегрируемости. Свойства двойного интеграла, связанные с подынтегральной функцией и с областью интегрирования. Формулировка критерия интегрируемости. Понятие кратного интеграла. Переход к повторному интегралу (идея доказательства). Замена переменных в двойном и тройном интеграле (формулировка). Геометрический смысл. Переход к полярным координатам. Понятие несобственного двойного интеграла. Критерий сходимости несобственного двойного интеграла. Вычисление интеграла. Вычисление интеграла. Вычисление площадей и объемов с помощью двойных интегралов.

### Тема 10. Обыкновенные дифференциальные уравнения первого порядка

Обыкновенные дифференциальные уравнения первого порядка. Понятие решения (частного и общего). Начальное условие. Задача Коши для обыкновенного

дифференциального уравнения первого порядка. Уравнения с разделяющимися переменными. Линейные уравнения.

### Литература

- 1. Архипов Г.И., Садовничий В.А., Чубариков В.Н., Лекции по математическому анализу, изд. 2-ое, М.: Высшая Школа, 2000.
- 2. Кочергин А.В, Кострикин И.А. Методические материалы по курсу математического анализа (Интеграл и функции нескольких переменных). М.: Экономический ф-т МГУ, ТЕИС, 2009
- 3. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: ACT: Астрель, 2010.
- 4. Ильин В.А., Позняк Э.Г. Основы математического анализа. Ч. 1, 2. М.: ФИЗМАТЛИТ, 2005.
- 5. Зорич В.А. Математический анализ, ч. 1. М.: Издательство МЦНМО, 2012.