Introduction to Bayesian Methods

Julia Soloveva

Moscow State University

yulisoloveva-yu@yandex.ru

October 31, 2017

프 > 프

.∃ ⊳

990

Overview

- 1 Introduction
 - Let's meet & Credits
- Bayesian Methods
 - General Concepts
 - Bayes Rule
 - Model Estimation
- 3 Discussion
 - Why Bayes?
 - BMA and DMA
 - Final Example

Literature

4

프 > 프

-

Let's meet

- Julia Soloveva
- Senior undergraduate student at MSU
- Fields of interest: Insurance Markets, Public Economics, Econometrics
- All questions are welcome throughout the lecture

프 > 프

- b

Credits

Today's lecture is based on materials of the "Introductory Bayesian Time Series Methods" course at Barcelona Graduate School of Economics

Professor Gary Koop University of Strathclyde

- Bayesian Basics
- Bayesian Methods for Fat Data
- Bayesian State Space Models

All relevant literature is listed later

Bayesian Philosophy - Blessed Uncertainty

Bayesian

- Unknown things (parameters, models, forecasts) are random variables
- We want distributions and means of unknown parameters
- 3 Few rules of probability

Nothing is true, everything is permitted (c)

Frequentist

- "True" values exist
- We want point estimates and confidence intervals
- ③ Need to make assumptions (e.g. no unit roots)

Bayesian Probability Rule

Definition (Conditional Probability)

The conditional probability of A given B, denoted as Pr(A|B), is the probability of event A occurring given event B has occurred.

Conditional probability summarizes what is known about B given A Well-known formulae:

$$Pr(A|B) = \frac{Pr(A,B)}{Pr(B)}$$

 $Pr(B|A) = \frac{Pr(A,B)}{Pr(A)}$

Combined together will produce Bayes Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Bayes Theorem

Theorem (Bayes Theorem)

$$Pr(A|B) = \frac{Pr(B|A)Pr(A)}{Pr(B)}$$

Above is expressed in terms of two events, A and B. However, can be interpreted as holding true for random variables, A and B with probability density functions replacing Pr()s in previous formulae.

イロト イポト イヨト イヨト

Econometrician's view

What does a humble researcher want?

- Estimate parameters in a model (regression coefficients)
- Compare different models (hypothesis testing)
- Predict (make forecasts)

What do we have being Bayes disciples?

- Let y be data, y* be unobserved data (e.g. a forecast), M_i for i = 1, ..., m be a set of models, each of which depends on some parameters Θⁱ.
- Model comparison based on posterior model probability: $p(M_i|y)$. Which model is the most likely?
- Prediction based on the predictive density $p(y|y^*)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Parameter Estimation in a Given Model

- Assume a single model which depends on parameters Θ $M(\Theta)$. We want to find properties (mean? distribution?) of the posterior $p(\Theta|y)$.
- Let us rewrite the Bayes rule: $p(B|A) = \frac{p(A|B)p(B)}{p(A)}$ Replace B by Θ and A by y to obtain: $p(\Theta|y) = \frac{p(y|\Theta)p(\Theta)}{p(y)}$

Note: for estimation we can ignore p(y) since it does not depend on Θ

- $p(\Theta|y)$ the posterior. Given the data, what do we know about Θ ?
- p(y|Θ) likelihood function. How well do our parameters predict the data?
- p(Θ) prior density. What do we know about parameters without seeing the data?

イロト 不振 トイヨト イヨト ヨー シック

Prior Talk

Sounds unscientific?

- More information is good if we do have prior information, we should include it.
- "Empirical Bayes" methods to estimate prior from the data
- Training sample prior divide our sample into training sample and regression sample
- Prior sensitivity analysis

イロト イポト イヨト イヨト

Prediction

Prediction is based on predictive density $p(y^*|y)$.

 Marginal density can be obtained from a joint density through integration:

 $p(y^*|y) = \int p(y^*, \Theta|y) d\Theta$

- Term inside integral can be rewritten as: $p(y^*|y) = \int p(y^*|y, \Theta) p(\Theta|y) d\Theta$
- Prediction involves the posterior and $p(y^*|y), \Theta)$

イロト 不得 トイヨト イヨト ヨー のくや

Model Comparison (Hypothesis Testing)

- Models denoted by M_i for i = 1, ..., m. M_i depends on parameters Θ^i .
- $p(M_i|y)$ is posterior model probability
- Using Bayes rule with $B = M_i$ and A = y we obtain: $p(M_i|y) = \frac{p(y|M_i)p(M_i)}{p(y)}$
- $p(M_i)$ prior model probability
- $p(y|M_i)$ marginal likelihood

イロト 不得 トイヨト イヨト ヨー のくや

Marginal Likelihood Calculation

Posterior can be written as: $p(\Theta^{i}|y, M_{i}) = \frac{p(y|\Theta^{i}, M_{i})p(\Theta^{i}|M_{i})}{p(y|M_{i})}$ Integrate both sides with respect to Θ^{i} , use fact that $\int p(\Theta^{i}|y, M_{i})d\Theta^{i} = 1$ and rearrange: $p(y|M_{i}) = \int p(y|\Theta^{i})p(\Theta^{i}|M_{i})d\Theta^{i}$ Marginal likelihood depends only on the prior and the likelihood.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

Model Comparison

For comparison of two models we calculate Posterior odds ratio

Definition (Posterior Odds Ratio)

$$PO_{ij} = \frac{p(M_i|y)}{p(M_j|y)} = \frac{p(y|M_i)p(M_i)}{p(y|M_i)p(M_j)}$$

3

イロト イポト イヨト イヨト

Two Models Case

$$p(M_1|y) + p(M_2|y) = 1$$

$$PO_{12} = \frac{p(M_1|y)}{p(M_2|y)}$$
and we get: $p(M_1|y) = \frac{PO_{12}}{1+PO12}$

$$p(M_2|y) = 1 - p(M_1|y)$$

Definition (The Bayes Factor)

$$BF_{ij} = \frac{p(y|M_i)}{p(y|M_j)}$$

Julia Soloveva (MSU)

E IQC

イロト イロト イヨト イヨト

Why Bayes?

- "Big" Data may be "tall" or "fat"
 - Tall Data = data with many observations
 - Fat Data = data with many variables

Fat Data is becoming common in macroeconomics.

Why include all the variables?

- The more data the better
- Want to avoid the omitted variable bias misspecification
- Although the multicollinearity problem remains. How do we deal with it?

Bayes and Fat Data

Why not use conventional methods? Intuition:

- Number of observations, N, reflects amount of information in the data
- Number of variables, ${\cal K}$ reflects dimension of things trying to estimate with that data
- If N is small relative to K we're trying to do too much with too little information
- What happens to least squares?
 - Standard errors are growing, troubles with confidence intervals
 - Fat data may be "noisy" good in-sample fit, bad out-of-sample forecasting

3

イロト イポト イヨト イヨト

Too Many Variables

Why don't we do hypothesis testing to reduce K? Because we get a *multiple testing problem*.

- With *K*=41 there are 41 different restricted regressions which drop one of the explanatory variables.
- There are K(K-1)/K restricted regressions which drop two variables.
 etc.
- In total we have $2^{K}=2$ 199 023 255 552 possible regression models.

How do we choose? Obviously, no t-tests.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Bayesian Model Averaging - the Concept

We don't need no model selection. Away with single model and estimates based on it.

Model averaging - take a weighted average of estimates or forecasts from all models with weights given by p(Mr|y).

- Let M_r for r = 1, ...R denote R models
- If ϕ is a parameter to be estimated (or a function of parameters) or a variable to be forecast, then the rules of probability imply:

$$p(\phi|y) = \sum^{R} p(\phi|y, M_r) p(M_r|y)$$

• Allows for formal treatment of model uncertainty. Allows for uncertainty which model generated the data.

イロト イポト イヨト イヨト

Dynamic Model Averaging

Another problem on the way: many time series variables.

Consider the problem: regression of inflation on many predictors. What may be the pitfalls?

- Regressions with many predictors can over-fit
- Marginal effects of predictors change over time (parameter change/structural breaks)
- The model itself may change
- Sometimes the random walk may be better!

Bayesians have an answer to that - Dynamic Model Averaging

Sac

イロト イポト イヨト イヨト 二日

The Final Example

• Consider a generalized Phillips curve: inflation depends on lagged inflation, unemployment and other predictors (change in consumption expenditures, change in real GDP, change in employment etc.).

One possible option - Time Varying Parameter Model (TVP)

 $y_t = z_t \Theta_t + \epsilon_t$ $\Theta_t = \Theta_{t-1} + \eta_t$ Where errors are i.i.d.

Disadvantage - same predictors are used at all points in time

イロト 不得 トイヨト イヨト ヨー のくや

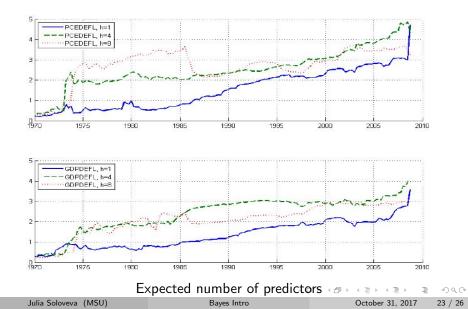
An example based on paper: Koop and Korobilis "Forecasting Inflation Using Dynamic Model Averaging" (2012, International Economic Review)

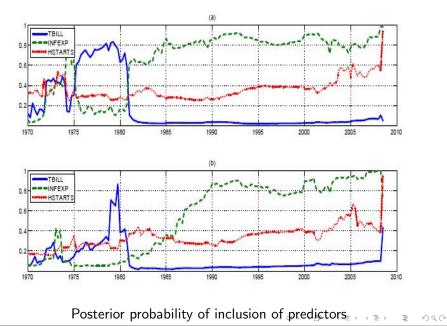
- Generalized Phillips Curve: inflation dependent on lagged inflation, unemployment and other predictors
- Other predictors: percentage changes in personal consumption, private residential fixed investment, real GDP; the log of housing starts, Treasury Bill market rate
- Two measures of inflation: core inflation, GDP deflator
- 3 forecasting horizons: h = 1, 4, 8

Sac

イロト イポト イヨト イヨト 二日

Dynamic Model Averaging - Results





Julia Soloveva (MSU)

Bayes Intro

October 31, 2017 24 / 26

Textbooks:

- Gary Koop, Bayesian Econometrics
- Walter Enders, Applied Econometric Time Series; Barber, Cemgil, Chiappa Bayesian Time Series - for overview of Bayes theory in time series
- Giordani, Pitt, Kohn Bayesian Inference for Time Series State Space Models - an article on State Space Methods

Useful links:

- Course materials, tutorials and sample codes
- Bayesian Econometrics for Central Bankers

Boo!

≡ ∽ < (~

イロト イロト イヨト イヨト