Алгоритмический сговор и дискриминация: условия ограничения конкуренции со стороны алгоритмов ценообразования

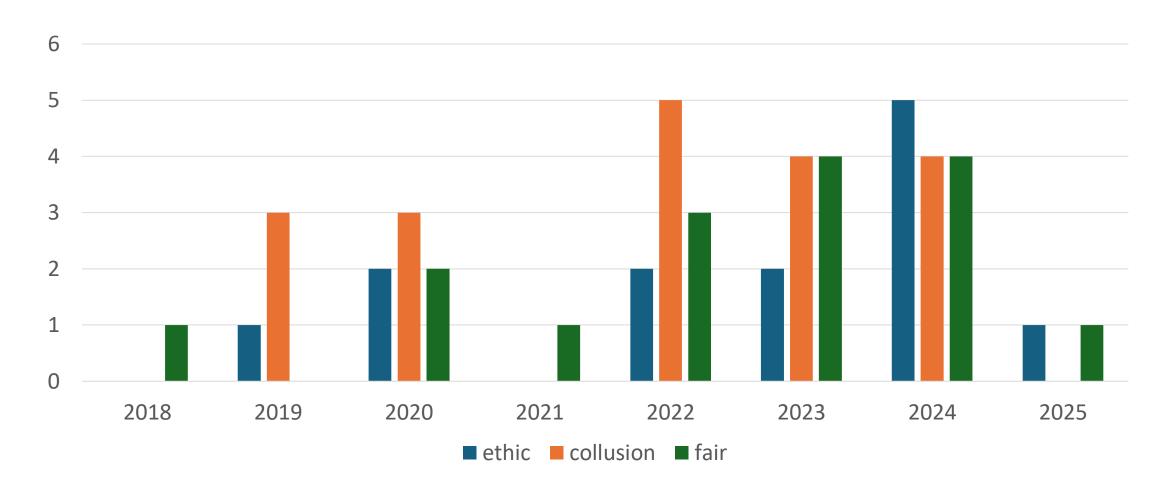
Морозов Антон Николаевич


к.э.н., с.н.с. кафедры конкурентной и промышленной политики ЭФ МГУ

н.с. ЦИКЭР РАНХиГС

Мотивация

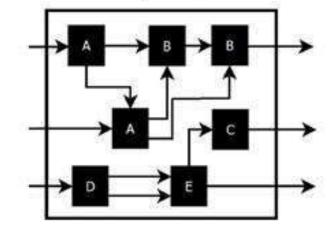
• Алгоритмическое ценообразование – следствие продолжающейся цифровизации экономики


• Алгоритмы:

- ✓ Подстраиваются под ожидания потребителей
- ✓ Создают ценностное предложение
- ⋆ Их цены воспринимаются как нечестные или завышенные (Ohlwein, Bruno, 2024)
- * Увеличивают время поиска приемлемых предложений (Vomberg et al., 2024)

Ключевые слова из литературы об алгоритмическом ценообразовании (2023-2025 годов) ²

Литература: ключевые слова


Как исследуют алгоритмический сговор?

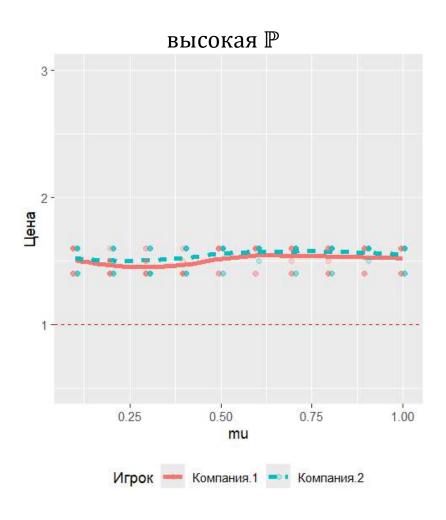
- Для внешнего наблюдателя алгоритм – «черный ящик»
- Подавляющее большинство работ используют симуляции
 - Наиболее часто на основе алгоритма Q-Learning (Dorner, 2021)
- Исследования на реальных рынках ограничены
- Исследуется сторона предложения, а не спроса

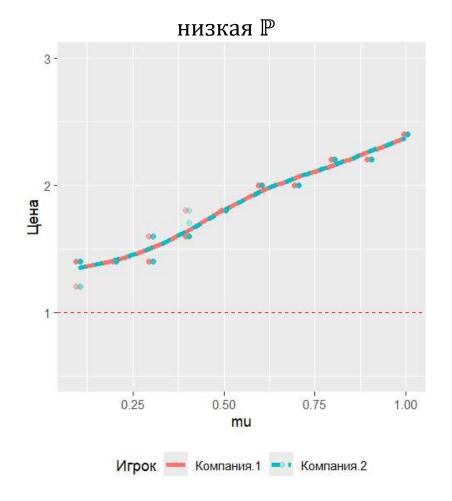
А что у черного ящика внутри?

Много черных ящиков!

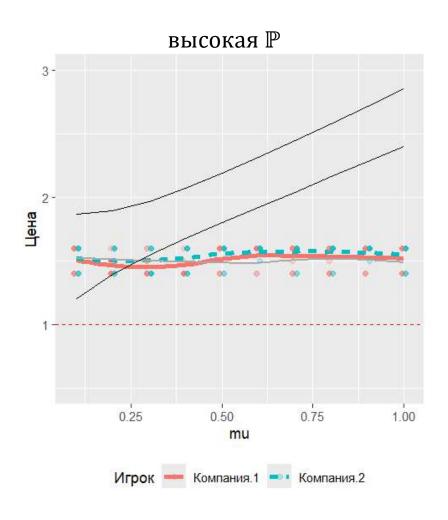
Факторы устойчивости сговора

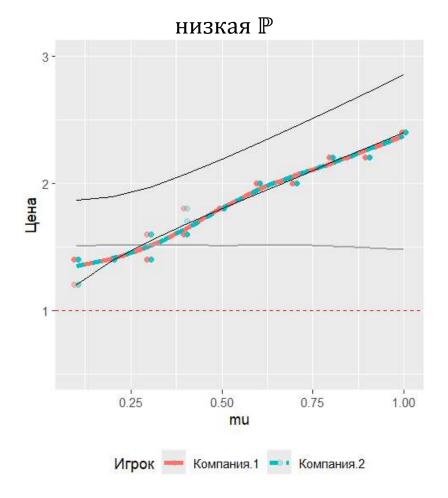
- Алгоритмы ставят цены выше конкурентного уровня
 - Но они не дотягивают до монопольного
 - Немногие исследования сравнивают результат алгоритма с «человеческим» (Dorner, 2021)
- Результаты крайне чувствительны к параметрам
 - Один и тот же алгоритм у разных авторов может давать разные результаты (Han, 2021; Hettich 2021)
 - Результаты неустойчивые, если на рынке комбинируются разные алгоритмы (Sanchez-Cartas, Katsamakas, 2024)
 - Сговор более вероятен, когда одна из сторон отвечает асимметрично или с задержкой (Brown, MacKay 2021)
 - Присутствие людей снижает вероятность сговора (Werner, 2021)


Пример


- Модификация симуляции из Calvano et al. (2020)
- Q-Learning (дискретный)
- Алгоритмы заранее не знают функцию спроса
- Назначают цену по очереди
 - С вероятностью \mathbb{P} случайно (исследование)
 - С вероятностью $(1 \mathbb{P})$ стратегически (эксплуатация)
- ightharpoonup Как будет изменяться цена для разных $\mu \in [0,1]$?

$$q_{i,t} = \frac{e^{\frac{\alpha_i - p_{i,t}}{\mu}}}{\sum_{j=1}^{2} e^{\frac{\alpha_j - p_{j,t}}{\mu}} + e^{\frac{\alpha_0}{\mu}}}$$


- μ параметр заменяемости
- $\mu=0$ для абсолютных субститутов


Где сговор?

Где сговор?

Проблемы симуляционных моделей

- Что считать конкурентным уровнем?
 - В практике ФАС затратный подход, сопоставление со средними издержками
 - Но цена Нэша-Бертрана выше издержек за счет особенностей спроса
- Нет ли ошибки в параметрах?
 - Необходимы маркеры, показывающие, что алгоритм работает корректно
 - Но сам факт возникновения сговора не признак некорректной работы?
 - Могут ли компании договориться использовать некорректные параметры?
- Как алгоритм учитывает неопределенность?
 - Известен ли спрос?
 - Известны ли цены конкурентов?
 - ➤ Если известны спрос и цены, зачем нам алгоритм?

Персонализация цены

- Прямое назначение ценовых алгоритмов:
 - Поддержка решений в условиях неопределенности
 - Обработка данных, которые не может обработать человек
 - Большие данные
 - Персональные данные

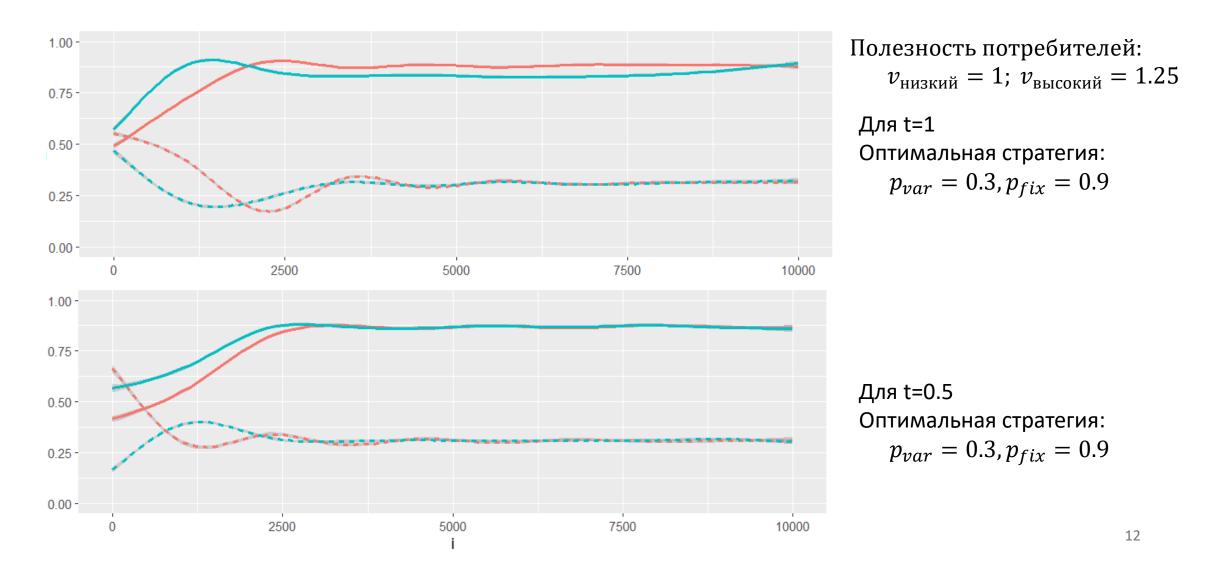
- Как алгоритм выявляет готовность платить?
- ➤ Как алгоритм дискриминирует?

Пример алгоритма с персонализацией

• Горизонтальная дифференциация (Хотеллинг)

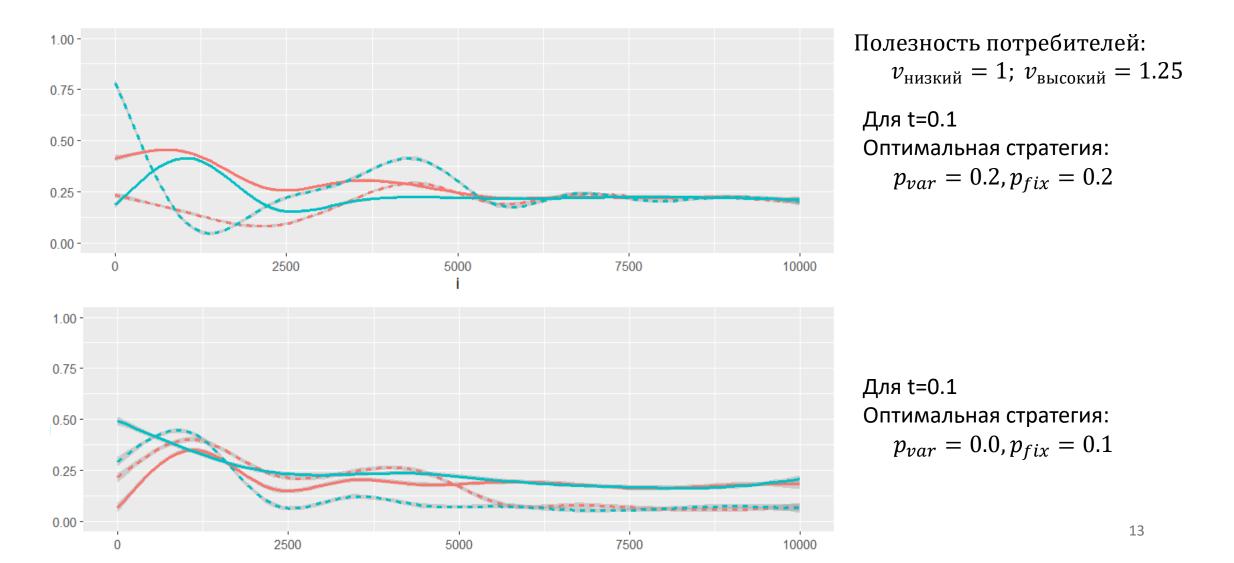
$$q_{ik}=1$$
 при $v_i-tr_{ik}-p_{ik}>v_i-tr_{i(-k)}-p_{i(-k)}\geq 0$

- $q_{ik}=0.5$ для безразличного индивида, $q_{ik}=0$ иначе
- Различные сценарии для разного уровня издержек переключения (t)
- Потребители с разной готовностью платить


$$v_i = v_0 + v_h \cdot \gamma_i; \gamma_i \in \{0,1\}$$

 $v_0 = 1; v_h = 0.25$

• Каждый продавец назначает цену с фиксированной и переменной частью


$$p_i = p_{fix} + p_{var} \cdot \gamma_i$$

- Алгоритм знает, что потребители готовы платить разную цену
- Но заранее не знает сколько именно

Высокие издержки переключения

Низкие издержки переключения

Выводы

- Риски неявного сговора противоречивы
 - Сговор устойчив в лабораторных условиях, реальных исследований пока недостаточно
 - Но алгоритм точно может быть использован в рамках явного сговора
- Алгоритмы легко учатся дискриминировать
 - Устойчивая дискриминация даже при низких издержках переключения
 - Прямое назначение алгоритма действие в условиях неопределенности
 - Они прямо предназначены для обработки Больших данных
- Необходимость специфического регулирования?
 - Потери благосостояния не очевидны
 - Пресечение явных сговоров: ограничения коридоров назначения цен, неправильные параметры
 - Развитие методов выявления недобросовестного поведения, дискриминации