ADVI algorithm for posterior approximating

Maxim Kochurov

EF MSU

November 15, 2016

Maxim Kochurov ADVI EF MSU 1 / 12

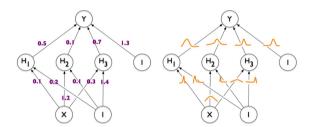
Table of Contents

- About
- 2 Problem
- Inference
 - Model
 - Constrained Variables
 - Gaussian Approximation
 - Optimization

 Maxim Kochurov
 ADVI
 EF MSU 2 / 12

Think Bayes

- Treat weights as distributions
- Choose optimization metrics
- Derive optimization problem
- Choose optimizer



 Maxim Kochurov
 ADVI
 EF MSU 3 / 12

Notations

- Consider we have N independent observations $\mathcal{D} = x_{1:N}$
- We also have k latent variables $\theta = (\theta_1, \dots, \theta_K)$
- And of course we have some probability model that depends on θ and it relates our \mathcal{D} and θ with likelihood $p(\mathcal{D}|\theta)$
- According to bayesian approach we posit a prior $p(\theta)$ on θ so we have $p(\mathcal{D}, \theta) = p(\mathcal{D}|\theta)p(\theta)$
- We are looking for $p(\theta|\mathcal{D})$ like true bayesians

Maxim Kochurov ADVI EF MSU 4 / 12

Model

- We need a differentiable probability model that has continuous $\theta_1, \ldots, \theta_K$
- Then we should be able take gradients $\nabla_{\theta} \log p(\mathcal{D}, \theta)$ over $supp(p(\theta))^1$

When we have such model we can start our further investigations and state the optimization problem

Maxim Kochurov

ADVI

Objective

We need

$$p(heta|\mathcal{D}) = rac{p(\mathcal{D}| heta)p(heta)}{\int p(\mathcal{D}| heta)p(heta)\mathrm{d} heta}$$

As it is often hard to deriver $p(\theta|\mathcal{D})$ but we can use an approximation $q(\theta|\psi)$. Common objective used for that kind of problem is simplified KL-Divergence

$$\begin{split} \mathit{KL}(q||p) = & \mathbb{E}_{q(\theta|\psi)} \left[\log \frac{q(\theta|\psi)}{p(\theta|\mathcal{D})} \right] = \\ & \mathbb{E}_{q(\theta|\psi)} \left[\log q(\theta|\psi) \right] - \mathbb{E}_{q(\theta|\psi)} \left[\log p(\theta|\mathcal{D}) \right] = \\ & \mathbb{E}_{q(\theta|\psi)} \left[\log q(\theta|\psi) \right] - \mathbb{E}_{q(\theta|\psi)} \left[\log \frac{p(\mathcal{D},\theta)}{p(\mathcal{D})} \right] = \\ & \underbrace{\mathbb{E}_{q(\theta|\psi)} \left[\log q(\theta|\psi) \right] - \mathbb{E}_{q(\theta|\psi)} \left[\log p(\mathcal{D},\theta) \right] + \mathbb{E}_{q(\theta|\psi)} \left[\log p(\mathcal{D}) \right]}_{\text{need to minimize(called variation free energy)}} \underbrace{}_{\text{const}} \end{split}$$

Maxim Kochurov **ADVI** FF MSU 6 / 12

Transformation T

So we have our $ELBO = \mathcal{L} = \mathbb{E}_{q(\theta|\psi)} \left[\log p(\mathcal{D}, \theta) \right] - \mathbb{E}_{q(\theta|\psi)} \left[\log q(\theta|\psi) \right] o \max_{\theta}.$

There is one important constraint on $q(\theta|\psi)$

$$supp(q(\theta|\psi)) \subseteq supp(p(\theta|\mathcal{D}))$$
 or $supp(p(\theta))$

It is about out prior knowledge about θ , we want our beliefs and what we get to have no conflicts The solution is pretty simple:

$$T: supp(p(heta))
ightarrow \mathbb{R}^K$$

Applying it to θ we have $\zeta = T(\theta)$ and

$$g(\mathcal{D},\zeta) = p(\mathcal{D},T^{-1}(\zeta)) |\det J_{T^{-1}}(\zeta)|$$

Why not approximating in new coordinate space where all is pretty good?

Maxim Kochurov **ADVI** FF MSU 7 / 12

Gaussian Approximation

We define approximation family in real coordinate space as diagonal Gaussian. It's easy to work with.

$$q(\zeta|\psi) = \mathcal{N}(\zeta|\mu, diag(\sigma^2)) = \prod_{k=1}^K \mathcal{N}(\zeta_k|\mu_k, \sigma_k^2)$$

Recall our objective

$$\mathcal{L} = \mathbb{E}_{m{q}(heta|\psi)} \left[\log m{q}(heta|\psi)
ight] - \mathbb{E}_{m{q}(heta|\psi)} \left[\log m{p}(\mathcal{D}, heta)
ight]$$

With some transformations it is now

$$\mathcal{L} = \mathbb{E}_{m{q}(\zeta|\psi)}\left[\log m{p}(\mathcal{D},\zeta)\left|\det J_{\mathcal{T}^{-1}}(\zeta)
ight|
ight] - \mathbb{E}_{m{q}(\zeta|\psi)}\left[\log m{q}(\zeta|\psi)\left|\det J_{\mathcal{T}^{-1}}(\zeta)
ight|
ight]$$

We can't easily take gradients until expectation depends on ψ , so we use reparametrization trick

$$\zeta = \mu + \exp(\omega) \cdot \eta$$
 where $\omega = \log(\sigma), \ \eta \sim \mathcal{N}(\eta|0, I)$

Call $S_{n,n}: \zeta \to n$

Maxim Kochurov **ADVI** FF MSU 8 / 12

Optimization

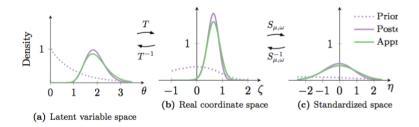


Figure: How it works

Finally

$$\mathcal{L} = \mathbb{E}_{\mathcal{N}(\eta|0,\mathrm{I})} \left[\log p(\mathcal{D}, S_{\mu,\omega}^{-1}(\eta)) \left| \det J_{\mathcal{T}^{-1}}(S_{\mu,\omega}^{-1}(\eta)) \right| \right] - \\ \mathbb{E}_{\mathcal{N}(\eta|0,\mathrm{I})} \left[\log q(S_{\mu,\omega}^{-1}(\eta)|\mu,\omega) \left| \det J_{\mathcal{T}^{-1}}(S_{\mu,\omega}^{-1}(\eta)) \right| \right] o \max_{\mu,\omega}$$

Maxim Kochurov **ADVI** EF MSU 9 / 12

Algorithm

Algorithm 1: Automatic Differentiation Variational Inference

Input: Dataset $\mathbf{X} = \mathbf{x}_{1:N}$, model $p(\mathbf{X}, \theta)$.

Set iteration counter i = 0 and choose a stepsize sequence $\rho^{(i)}$.

Initialize $\mu^{(0)} = \mathbf{0}$ and $\omega^{(0)} = \mathbf{0}$.

while change in ELBO is above some threshold do

Draw M samples $\eta_m \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ from the standard multivariate Gaussian.

Invert the standardization $\zeta_m = \operatorname{diag}(\exp(\omega^{(i)}))\eta_m + \mu^{(i)}$.

Approximate $\nabla_{\mu}\mathcal{L}$ and $\nabla_{\omega}\mathcal{L}$ using MC integration (Equations 5 and 6).

Update $\mu^{(i+1)} \longleftarrow \mu^{(i)} + \rho^{(i)} \nabla_{\mu} \mathcal{L}$ and $\omega^{(i+1)} \longleftarrow \omega^{(i)} + \rho^{(i)} \nabla_{\omega} \mathcal{L}$.

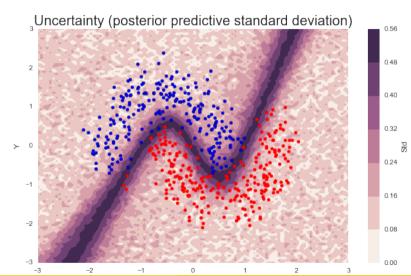
Increment iteration counter.

end

Return
$$\mu^* \longleftarrow \mu^{(i)}$$
 and $\omega^* \longleftarrow \omega^{(i)}$.

4 D > 4 P > 4 E > 4 E >

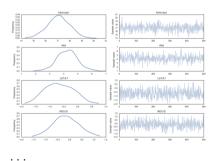
Toy neural network example (2x5x5x1)



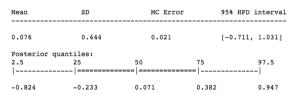
Maxim Kochurov ADVI EF MSU 11 / 12

Linear Regression(Boston dataset)

$$y \sim RM + LSTAT + INDUS + NOX + ZN + DIS$$



ZN:



Maxim Kochurov ADVI EF MSU 12 / 12