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About

Think Bayes

@ Treat weights as distributions
@ Choose optimization metrics
@ Derive optimization problem

@ Choose optimizer
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Problem

Notations

Consider we have N independent observations D = xq.pn

We also have k latent variables § = (61,...,60k)

And of course we have some probability model that depends on € and it relates our D and
6 with likelihood p(D|6)

@ According to bayesian approach we posit a prior p(#) on 6 so we have
p(D.0) = p(D|0)p(9)
e We are looking for p(8|D) like true bayesians
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Inference  Step O

Model

@ We need a differentiable probability model that has continuous 61, ...,0k

@ Then we should be able take gradients V log p(D, 8) over supp(p(0))*

When we have such model we can start our further investigations and state the optimization
problem

tsupp(p(0)) = {0]0 € R" and p(0) > 0} C R”
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Inference  Step O

Objective

We need

p(D|0)p(0)
p(0|D
N COROT
As it is often hard to deriver p(f|D) but we can use an approximation g(#]1)). Common
objective used for that kind of problem is simplified KL-Divergence

KL(qllp) =Eq(o1p) {'08; q(ew)] =

p(0ID)
Eqo1e) [log q(0]¢)] — Eq(o1y) [log p(9|D =
Eq(010) [108 (61)] ~ Eq(oj) [log }

Eq(o1p) llog a(01¥)] — Eqe1) [log p(ﬂ 9)] +Eqo1p) [log p(D)]

need to minimize(called variation free energy) const
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Inference  Step 1

Transformation T

So we have our ELBO = L = Eggy) [log p(D, 0)] — Eq(g)y) [log q(0]20)] — mix.
There is one important constraint on q(6|v)

supp(q(0]v)) C supp(p(0|D)) or supp(p(¥))

It is about out prior knowledge about 8, we want our beliefs and what we get to have no
conflicts The solution is pretty simple:

T - supp(p(9)) — R
Applying it to 6 we have ( = T(6) and
g(D,¢) = p(D, T7H(¢)) [det J7-1(¢)]

Why not approximating in new coordinate space where all is pretty good?
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Inference  Step 2

Gaussian Approximation

We define approximation family in real coordinate space as diagonal Gaussian. It's easy to

work with.
K

q(Clv) = N (Clu, diag(c?)) = [ ] N (Sl o7)
k=1
Recall our objective

L = Eqy) [log q(0]9)] — Eq(ojy) [log p(D, 0)]
With some transformations it is now

L = Eq(¢ip) [log p(D, ¢) |[det Jr-1(O)|] — Eq¢py) [log q(¢[e) [det Jr-1(C)]]

We can't easily take gradients until expectation depends on v, so we use reparametrization
trick

(=p+exp(w)-n where w=log(c), n~N(nl0,I)
Call S, : ¢ — 1
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Inference  Step 3

Optimization
Prior
o __E; f_“_: Poste
7 ~— 1 — 1 Appr
E ! Sil
o 1 2 3 8 -1 0 1 2¢ 2-10 1 2 7

(b) Real coordinate space (c) Standardized space

(a) Latent variable space

Figure: How it works

Finally

L :EN(”]‘OJ) [Iog p(D7 Suw ’det JT 1 )H
Ex(njo.1) [108 G(Syes (1)1, ) [det J7- 1( (n))!] — max
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Inference  Step 3

Algorithm

Algorithm 1: Automatic Differentiation Variational Inference

Input: Dataset X = x;.y, model p(X,#).

Set iteration counter i = 0 and choose a stepsize sequence p(i).
Initialize p(®) = 0 and w(® = 0.

while change in ELBO is above some threshold do

Draw M samples 1, ~ A(0,I) from the standard multivariate Gaussian.

Invert the standardization ¢, = diag(exp(w))n,, + ¥,

Approximate V, £ and VL using MC integration (Equations and @
Update pl+1) «— pl) 4 pV £ and w(i+D) «+— w4 OV, L.

Increment iteration counter.
end

Return p* ¢— p( and w* +— w(.
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Inference  Step 3

Toy neural network example (2x5x5x1)

,Uncertainty (posterior predictive standard deviation)
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Inference  Step 3

Linear Regression(Boston dataset)

y ~ RM + LSTAT + INDUS + NOX + ZN + DIS

Posterior quantiles:
2.5 25 50 75 97.5
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