Introduction into Bayesian statistics

Maxim Kochurov

EF MSU

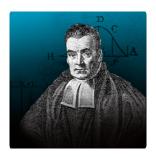
November 15, 2016

Content

- Framework
 - Notations
 - Model specification
- ② Difference
 - Bayesians vs Frequentists
- 3 Knowledge transfer

Framework

- Treat everything as random variables
- Distribution over a variable is our ignorance about it
- Use bayes theorem



Notations

Bayes theorem

$$p(A|B) = \frac{p(B,A)}{p(B)} = \frac{p(B|A)p(A)}{p(B)}$$
$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta}$$

Likelihood = $p(\mathcal{D}|\theta)$ - Measure of how well our data is described by the given model

Prior = $p(\theta)$ - Our prior beliefs about θ before seeing the data **Posterior** = $p(\theta|\mathcal{D})$ - Our beliefs about θ after seeing the data **Evidence** = $p(\mathcal{D}) = \int p(\mathcal{D}|\theta)p(\theta)d\theta$ - Measure of how common is our data

Bayesian model is specified by the given data \mathcal{D} , likelihood **function** $p(\mathcal{D}|\theta)$ - probability to see data under parameters θ , and **prior beliefs** $p(\theta)$ about parameters

Bayesian model is specified by the given data \mathcal{D} , likelihood **function** $p(\mathcal{D}|\theta)$ - probability to see data under parameters θ , and **prior beliefs** $p(\theta)$ about parameters

Example

•
$$\mathcal{D} = (X, y) = \{(x_i, y_i) | i \in [1, ..., N]\}$$

Bayesian model is specified by the given data \mathcal{D} , likelihood **function** $p(\mathcal{D}|\theta)$ - probability to see data under parameters θ , and **prior beliefs** $p(\theta)$ about parameters

Example

- $\mathcal{D} = (X, y) = \{(x_i, y_i) | i \in [1, ..., N] \}$
- $p(\mathcal{D}|\theta) = p(e|\beta); \quad e = y X\beta; \quad e \sim \mathcal{N}(0, \sigma^2 * I)$

Bayesian model is specified by the given data \mathcal{D} , likelihood **function** $p(\mathcal{D}|\theta)$ - probability to see data under parameters θ , and **prior beliefs** $p(\theta)$ about parameters

Example

- $\mathcal{D} = (X, y) = \{(x_i, y_i) | i \in [1, ..., N] \}$
- $p(\mathcal{D}|\theta) = p(e|\beta)$; $e = y X\beta$; $e \sim \mathcal{N}(0, \sigma^2 * I)$
- $p(\theta) = p(\beta); \quad \beta \sim \mathcal{N}(0, \sigma_{\beta}^2 * I)$

Bayesian model is specified by the given data \mathcal{D}_i , likelihood **function** $p(\mathcal{D}|\theta)$ - probability to see data under parameters θ , and **prior beliefs** $p(\theta)$ about parameters

Example

- $\mathcal{D} = (X, y) = \{(x_i, y_i) | i \in [1, ..., N] \}$
- $p(\mathcal{D}|\theta) = p(e|\beta)$; $e = y X\beta$; $e \sim \mathcal{N}(0, \sigma^2 * I)$
- $p(\theta) = p(\beta); \quad \beta \sim \mathcal{N}(0, \sigma_{\beta}^2 * I)$
- $p(\beta|\mathcal{D}) = \frac{p(\mathcal{D}|\beta)p(\beta)}{p(\mathcal{D})}$

Bayesian model is specified by the given data \mathcal{D}_i , likelihood **function** $p(\mathcal{D}|\theta)$ - probability to see data under parameters θ , and **prior beliefs** $p(\theta)$ about parameters

Example

Linear Regression

- $\mathcal{D} = (X, y) = \{(x_i, y_i) | i \in [1, ..., N] \}$
- $p(\mathcal{D}|\theta) = p(e|\beta)$; $e = y X\beta$; $e \sim \mathcal{N}(0, \sigma^2 * I)$
- $p(\theta) = p(\beta); \quad \beta \sim \mathcal{N}(0, \sigma_{\beta}^2 * I)$
- $p(\beta|\mathcal{D}) = \frac{p(\mathcal{D}|\beta)p(\beta)}{p(\mathcal{D})}$
- Maximizing $p(\beta|\mathcal{D})$ by β gives a **MAP** solution. In this case it is called a ridge regression solution

4 0 3 4 4 3 3 4 3 5 4 3 5 4 3 5

Bayesian and Frequentist approach differences

	Frequentist	Bayesian
Randomness	Objective indefiniteness	Subjective ignorance
Variables	Random and Deterministic	Everything is random
Inference	ML Estimation	Posterior or MAP Estimation
Applicability	n ≫ 1	$\forall n$

Consider you have to estimate θ in some problem1. All you have is your prior domain knowledge $p(\theta)$ and data \mathcal{D} .

Consider you have to estimate θ in some problem1. All you have is your prior domain knowledge $p(\theta)$ and data \mathcal{D} .

Then you solve the problem and get posterior $p(\beta|\mathcal{D}_1)$, what's next?

Consider you have to estimate θ in some problem1. All you have is your prior domain knowledge $p(\theta)$ and data \mathcal{D} .

Then you solve the problem and get posterior $p(\beta|\mathcal{D}_1)$, what's next? Use $p(\beta|\mathcal{D}_1)$ in the future for problem2! Just treat posterior $p(\beta|\mathcal{D}_1)$ as a new prior.

Consider you have to estimate θ in some problem1. All you have is your prior domain knowledge $p(\theta)$ and data \mathcal{D} .

Then you solve the problem and get posterior $p(\beta|\mathcal{D}_1)$, what's next? Use $p(\beta|\mathcal{D}_1)$ in the future for problem2! Just treat posterior $p(\beta|\mathcal{D}_1)$ as a new prior.

$$p(\beta|\mathcal{D}_2) = \frac{p(\mathcal{D}_2|\beta)p(\beta|\mathcal{D}_1)}{p(\mathcal{D}_2)}$$