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1 Measurement error

1.1 Problem

Consider two examples. We would like to run a regression

yi = x1iβ1 + x2iβ2 + εi

but we do not observe x2. Instead, in the first case we observe a z2 which is x2 and some
measurement error:

z2i = x2i + νi

where νi is a random variable with zero mean, independent of x2i (think about hiring a
bad RA who will consistently make mistakes). Using z2i instead of x2i implies running a
regression:

yi = x1iβ1 + z2iβ2 + εi − νiβ2 = x1iβ1 + z2iβ2 + ηi

Running OLS regression yields

plim(β̂2) =
cov(z∗2i, y

∗
i )

var(z∗2i)
= β2 +

cov(z∗2i, ηi)

var(z∗2i)
= β2 − β2

σν
σx2 + σν

= β2
σx2

σx2 + σν
(1)

where z∗2i = M1z2i, yi = M1y
∗
i , and M1 = (I−x1(x′1x1)−1x′1). This implies that if variance

of νi is greater than zero (that is, if there is a measurement error), estimate would be
attenuated.

Moreover, it appears that estimator of β1 would generally also be inconsistent:

plim(β̂1) = β̃1 − plim(β̂2)γ (2)
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where β̃1 is a coefficient in population regression of y on x1 alone, and γ is the coefficient
in population regression of x2 on x1. In general from equation (2) we cannot conclude
about the direction of bias. Moreover, if x1 is correlated with ν bias is even harder to
predict.

On the other hand, if x1 is uncorrelated with x2 γ would be zero, which would imply that
1) β̃1 = β1 2) plim(β̂1) = β̃1. Hence, OLS estimator of β1 would be consistent.

Now lets think about a different case. Again, we would like to run a regression

yi = x1iβ1 + x2iβ2 + εi

and again we do not observe x2. Instead, we observe a proxy z2 such that

x2i = z2i + ui

where ui is a prediction error such that E(u|z2) = 0. Using z2 instead of x2 we get

yi = x1iβ1 + z2iβ2 + εi + uiβ2 = x1iβ1 + z2iβ2 + ηi

Running OLS:

plim(β̂2) =
cov(z∗2i, y

∗
i )

var(z∗2i)
= β2 +

cov(z∗2i, ηi)

var(z∗2i)
= β2 (3)

as E(ηi|x1, z2) = 0, so OLS estimator is consistent.

The bottom line is: it is very important what we assume as our data generating process
(DGP). Some people (i.e. Derek Neal) would claim that assumptions on DGP is the part
from which every paper should start. How to support this assumptions? That is why
economics is also an art, not only a sciences.

1.2 Solutions

Reconsider results in (1) and (2). If we have several proxies which are correlated with the
unobserved component (example 1), which would we choose? Equation (1) tells us that
we need to choose the one with the minimum variance of the unobserved component νi.
Equation (2) tells that we need to choose the one which is not correlated with x1 (however,
it is simple to show that in this case we can just omit x2).

1.2.1 Instrumental variables

Another familiar solution to this problem is instrumental variables (IV) approach. Assume
the same regression as before

yi = x1iβ1 + x2iβ2 + εi

with x2i being unobserved, but instead we observe a proxy

x̃2i = x2i + νi

Suppose we can find an instrument zi, such that
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• Instrument is correlated with x2i;

• Instrument is not correlated with either νi or εi.

Using zi as an instrument for x̃2i, we get a consistent estimator of β2:

plim(β̂2IV ) =
cov(y∗i , zi)

cov(x̃∗2i, zi)
= β2

An interesting example of such instrument can be (fairly rare) case when we observe two
proxies with uncorrelated measurement errors (think about the case when you hire two RA
for coding, and they make mean zero mistakes independently). In this case we have

x′2i = x2i + ν ′i

x′′2i = x2i + ν ′′i

ν ′i and ν ′′i are uncorrelated with each other and with εi. Then

plim(β̂2IV ) =
cov(y∗i , x

′′
2i)

cov(x′∗2i, x
′′
2i)

= β2

1.2.2 High Order Moment Estimator

What to do if we do not have a good instrument? If we can make stronger assumptions
on νi, εi and x2i there is a way to proceed. We make three basic assumptions ( νi, εi and
x2i are iid, νi, εi and x2i have moments of every order, E(ν) = E(ε) = 0) and add two
restrictive assumptions:

• νi and εi are distributed independently of each other and of x2i;

• β2 6= 0 and x2i is not normally distributed (in particular, skewed).

Under this conditions one can show that

E(y2i x̃2i) = β22E(x32i)

E(yix̃2i) = β2E(x32i)

So if β2 6= 0 and E(x32i) 6= 0

β̂2 = E(y2i x̃2i)/E(yix̃
2
2i) = β2

This estimator is called the third-order moment estimator. Interestingly, it can be derived
via IV procedure. Under assumptions above yix̃2i appears to be a valid and relevant
instrument. IV estimation produces:

plim(β̂2IV ) =
cov(y∗i , yix̃2i)

cov(x̃∗2i, yix̃2i)
=
cov(x2i, x

2
2i)β

2
2 + cov(νi, ν

2
i )β22

cov(x2i, x22i)β2 + cov(νi, ν2i )β2
= β2

Is it restrictive to assume that distribution of x2i is skewed? Well, at least one needs to
argue that. Roberts and Whited (2012) [1] give an example of marginal q in the investment
problem. Like many other valuation ratios in finance, marginal q is considered to be highly
skewed. That is, a number of papers used Tobin’s q as a proxy for marginal q (i.e. see
Erickson and Whited 2000 [2], Chen and Chen 2012 [3])
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1.2.3 Reverse Regression Bounds

What if assumptions in previous section seem to be not plausible? There is another solution
that can be proposed: setting bounds on β2. Again, consider

yi = x1iβ1 + x2iβ2 + εi

with x2i being unobserved, but instead we observe a proxy

x̃2i = x2i + νi

Assume both β1 and β2 are (strictly) greater than zero1. Now run two regressions:

yi = x1ib1 + x̃2ib2 + εi

x1i = yi
1

b̄1
+ x̃2i

−b̄2
b̄1

+ εi
−1

b̄1

Gini2 (1921) [4] showed that true coefficients β1 and β2 must lie between (b1, b̄1) and (b2, b̄2),
respectively. Standard errors for b̄ estimators can be computed via delta method.

If measurement error is severe the bounds would be too wide, and this procedure wound
not be informative. However, this still appears to be a good diagnostic test.

1.3 Conclusions

The bottom line of this is:

• State assumptions on DGP and on relation between variables/error terms very clearly;

• Defend this assumptions carefully;

• If testing a hypothesis like H0 : β2 = 0 - try to use proxies that will make type 1
error less likely (more difficult to reject the null).

1This is assumed without loss of generality
2Roberts and Whited cite this paper which is in Italian. Derivation of this result is fairly straightforward.
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