Эконометрический анализ процесса гистерезиса

Тадей Валерия, э-301

Научный руководитель: Туманова Елена Алексеевна

Актуальность исследования

- Пандемия коронавируса стала причиной резкого роста безработицы во многих странах в 2020-2021 годах
- События и санкции 2022 года повлекут значительный экономический кризис с потерей многих рабочих мест
- Проверка наличия гистерезиса позволяет предсказать путь восстановления рынка труда после значительного шока и адаптировать экономическую политику для смягчения последствий

Цель исследования:

Выявление эффекта гистерезиса на данных Чехии и России с помощью макроэкономического моделирования и тестов на стационарность временного ряда.

Задачи:

- Изучить литературу по теме
- Найти данные по безработице и другим необходимым показателям
- Оценить параметры VAR-модели для выявления наличия гистерезиса
- Провести тесты на единичный корень для показателей безработицы
- Сделать выводы

Обзор литературы

Гипотеза гистерезиса

- Гипотеза впервые появилась в статье Blanchard and Summers 1986 года
- Предполагается, что на NAIRU оказывает влияние уровень безработицы в прошлом
- Согласно гипотезе, временные шоки изменяют долгосрочный равновесный уровень безработицы в будущем, т.е. не происходит полного возврата к начальному равновесию

Способы выявления гистерезиса

• Моделирование зависимости долгосрочного уровня безработицы от различных макроэкономических показателей

Позволяет определить, через какие механизмы появляется гистерезис

• Эконометрические тесты на единичный корень

Анализирует лишь особенности временного ряда, метод чувствителен к периоду выборки, включению структурных сдвигов и тд.

Модели, исследующие причины эффекта гистерезиса

- Эффект стигматизации (Graafland and Huizinga, 1989)
- Теория инсайдеров-аутсайдеров (Lindbeck and Snower, 1985)
- Модель входа фирм на рынок и выхода с него (L. Piscitelli, R. Cross, M. Grifield, H. Lamba, 2000)
- Модель храповика (Smyth and Easaw, 2001)
- Модель социального статуса (Blinder, 1988)
- Модели NAIRU с добавлением факторов, потенциально провоцирующих эффект гистерезиса

Модель NAIRU с показателями, учитывающими экономический цикл

- «Hysteresis and labour market institutions. Evidence from the UK and the Netherlands» (Rodriguez-Gil, 2018)
- Обычно предполагалось, что NAIRU зависит только от показателей институтов рынка труда
- Гистерезис: шоки, меняющие запасы капитала и долгосрочную безработицу, оказывают давление на поведение работников и фирм при установке з/п и цен-> меняется уровень NAIRU
- Подход: оценка уравнений для заработных плат и цен, получение из них уровня безработицы
- Модель основывается на предпосылке, согласно которой рынки товаров и труда характеризуются несовершенной конкуренцией
- Это позволяет работникам и фирмам влиять на устанавливаемые зарплаты и цены, соответственно

Уравнение заработной платы

- Работники добиваются реальной з/п на некотором «целевом» уровне $(w p^e)$
- Уравнение з/п имеет вид:

$$w - p^e = \gamma_2 (y - l)^e - \gamma_1 u + \gamma_3 grr + \gamma_4 t^w + \gamma_5 up + \gamma_6 lu$$
, (все переменные логарифмированы)

где $(y-l)^e$ - ожидаемая производительность труда; u – уровень безработицы; grr – валовые пособия по безработице; t^w - налоговый клин; up – эффективность профсоюзов; lu – длительная безработица

• 3/п растет с увеличением производительности, а также с ростом lu — отражение гипотезы о том, что продолжительная безработица усиливает переговорную силу инсайдеров

Уравнение цен на продукцию фирм

- Фирмы устанавливают цену, опираясь на ожидаемую $3/\pi (p-w^e)$
- Уравнение для цен на продукцию будет иметь вид:

$$p - w^e = -\phi_1 u - \phi_2 k - \phi_3 (y - l)^e + \phi_4 (i - \Delta p)$$
,

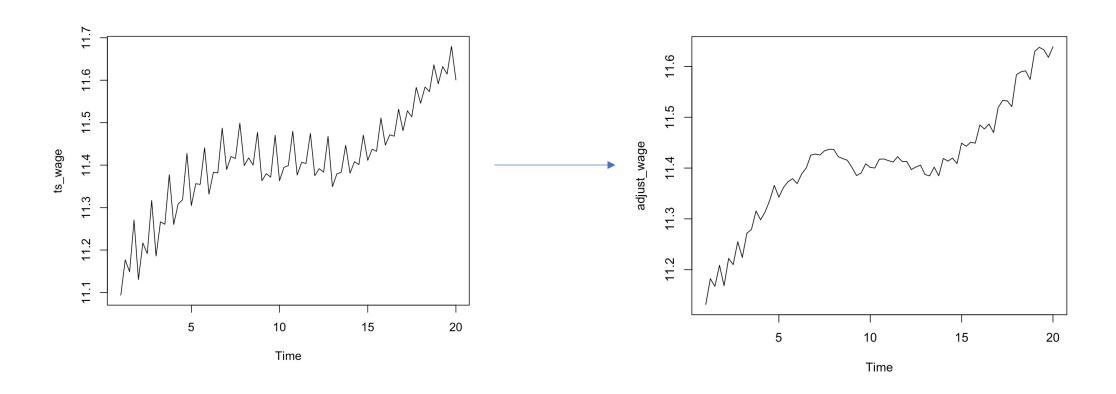
где k — запас основного капитала; $(i-\Delta p)$ - реальные долгосрочные процентные ставки

Решение для естественного уровня безработицы

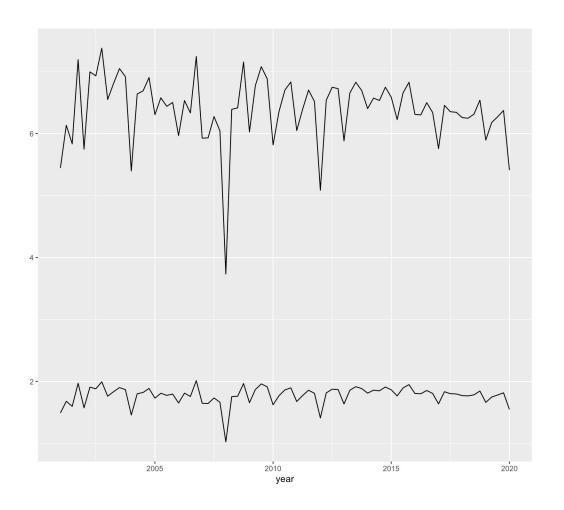
• Предположив, что в долгосрочном периоде ожидаемые цены и з/п соответствуют фактическим, можно вывести уравнение для и*

$$u^* = \beta_2(y - l) + \beta_3 lu + \beta_4 grr + \beta_5 t^w + \beta_6 up + \beta_7 k + \beta_8 (i - \Delta p)$$

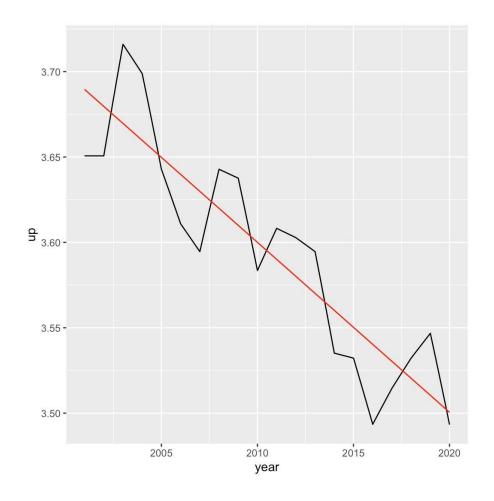
- u^* такой уровень безработицы, при котором требования фирм и работников о доходах выполняются, т.е. NAIRU
- Если $\beta_2 = \beta_3 = \beta_7 = \beta_8 = 0$, то эффект гистерезиса отсутствует и NAIRU зависит только от характеристик рынка труда, как и предполагает гипотеза стационарного естественного уровня
- В противном случае, эффект гистерезиса присутствует экономические шоки изменяют долгосрочный равновесный уровень безработицы


Данные

- Для оценивания модели были выбраны данные по Чехии
- Тесты на единичный корень подтверждают наличие гистерезиса в стране (Akay, Oskonbaeva, Bülbül, 2020)
- Доступны поквартальные данные с Q1 2001 по Q1 2020
- Некоторые годовые показатели были линейно интерполированы
- В качестве силы профсоюзов взят показатель «Переговорная сила» (в статье доля людей, состоящих в профсоюзах, corr = 0,91)


Обработка данных (1)

- Удалена сезонность в реальной з/п и производительности
- Тест ADF подтверждает стационарность up и r


Обработка данных (2)

- r почти полностью совпадает с Pvm
- Корреляция показателей = 98%; их разностей 99,9%
- Странно использовать ΔPvm_{t-s} в качестве экзогенной параллельно с \mathbf{r}

Обработка данных (3)

- Up стационарна относительно тренда; без тренда можно считать не стационарной
- В последующей оценке 2 варианта спецификации использовать и не использовать

Оценивание модели

- Остальные ряды переменных не стационарны (тест ADF-GLS) на 1% уровне
- Авторы применяют VECM-модель и симуляцию шоков с помощью IRF
- Экзогенная переменная индекс спотовых цен на нефть в предыдущие 2 периода
- Используются данные без сезонности с добавлением в спецификацию тренда

$$\Delta z_t = c + \Theta_1 \Delta z_{t-1} + \Theta_2 \Delta z_{t-2} + \gamma \beta \begin{bmatrix} z_{t-1} \\ T \end{bmatrix} + \lambda x_t + \varepsilon_t,$$

• где $z_t = (u_t, wage_t, lu_t, nrr_t, tw_t, k_t, prod_t)$ – вектор эндогенных переменных; с – константа; Θ_i – матрицы коэффициентов краткосрочных связей; γ и β – матрицы нагрузок и коэффициентов коинтеграции, соответственно; x_t – вектор экзогенных переменных, x_t = $(\Delta Pvm_{t-1}, \Delta Pvm_{t-2})$; Т – переменная для тренда, ε_t – вектор случайных ошибок

Выбор порядка модели

	_1	2	3	4
AIC(n)	-64.168	-65.375	-65.588	-66.067
HQ(n)	-63.205	-63.799	-63.400	-63.266
SC(n)	-61.752	-61.422	-60.097	-59.039
FPE(n)	0	0	0	0

[?] для vecm берется на 1 лаг меньше, чем тесты рекомендуют для var?

Определение порядка коинтегрированности

- Используется тест Йохансена
- 2 метода eigenvalues и trace; первый считается более надежным на маленьких выборках
- В таблице результаты теста eigenvalues с 3-мя лагами
- Вывод: на 1% уровне 2 вектора коинтеграции

H0	Тестовая	10% крит.	5% крит.	1% крит.
	статистика	знач.	знач.	знач.
r <= 6	9.10	10.49	12.25	16.26
r <= 5	11.98	16.85	18.96	23.65
r <= 4	14.36	23.11	25.54	30.34
r <= 3	27.37	29.12	31.46	36.65
r <= 2	39.80	34.75	37.52	42.36
r <= 1	60.16	40.91	43.97	49.51
r = 0	69.59	46.32	49.42	54.71

Матрица долгосрочных эластичностей

	<i>u.13</i>	wage_ seas.l3	lu.13	nrr.l3	tw.13	k.13	prod_seas.13	trend.13
	β1	β2	<i>β</i> 3	β4	β5	β6	$\beta 7$	β8
ect1	1	0	2.062 (0.686)	11.109 (2.184)	46.295 (11.7)	18.821 (4.699)	-9.978 (4.98)	-0.087 (0.014)
ect2	0	1	0.2579 (0.034)	0.272 (0.108)	-1.786 (0.578)	0.504 (0.232)	-1.0498 (0.246)	-0.006 (0.001)

- Безработица значимо связана со всеми показателями
- Тестируем равенство коэффициентов β_3 , β_6 и β_7 нулю (отсутствие эффекта гистерезиса). P-value = 0.188
- Не можем отвергать отсутствие долгосрочной связи между безработицей и данными переменными.

Оценка краткосрочных зависимостей

- Изменение уровня безработицы зависит от прошлого изменения безработицы, а также от изменения налогового клина за 2 квартала до текущего момента
- Корректирующие члены значимы

	Δu			$\Delta wage$		
Переменная	Коэффициент	Ст. ошибка		Коэффициент	Ст. ошибка	
const	-18,623	7,048	**	1,386	1,029	
d_u_1			***			
	0,390	0,140		-0,001	0,020	
d_u_2	-0,101	0,148		-0,020	0,022	
d_wage_seas_1	0,142	1,039		-0,339	0,152	**
d_wage_seas_2	-0,102	1,031		-0,169	0,150	
d_lu_1	0,043	0,284		0,056	0,042	
d_lu_2	0,234	0,315		0,074	0,046	
d_nrr_1	0,539	1,129		0,097	0,165	
d_nrr_2	0,422	1,251		0,118	0,183	
d_tw_1	-1,203	3,045		0,875	0,444	*
d_tw_2	-9,140	3,699	**	-0,025	0,540	
d_k_1	0,703	0,760		0,206	0,111	*
d_k_2	0,181	0,783		0,119	0,114	
d_prod_seas_1	-0,883	0,532		0,061	0,078	
d_prod_seas_2	-0,146	0,557		0,054	0,081	
dPvm_1	0,0884404	0,123252		0,015	0,018	
dPvm_2	-0,0593249	0,123974		0,014	0,018	
EC1	0,0480404	0,0178298	***			
				-0,003	0,003	
EC2	-0,719327	0,344268	**	-0,161	0,050	***
	R ²	0.5997		R^2	0,6	

Эффект гистерезиса в графиках откликов

Рассматриваем несколько каналов влияния:

- 1. изменение заработных плат в ответ на шоки u и lu отклик производительности на шок lu -> почему растут 3/n
- 2. изменение *и* после подъема производительности сравнение откликов производительности и з/п на шок производительности (если *и* падает с ростом производительности, это может быть результатом замедленного изменения работниками своих требований по з/п)
- 3. отклик безработицы на шок в запасах капитала и наоборот

Проверка теории инсайдеров-аутсайдеров

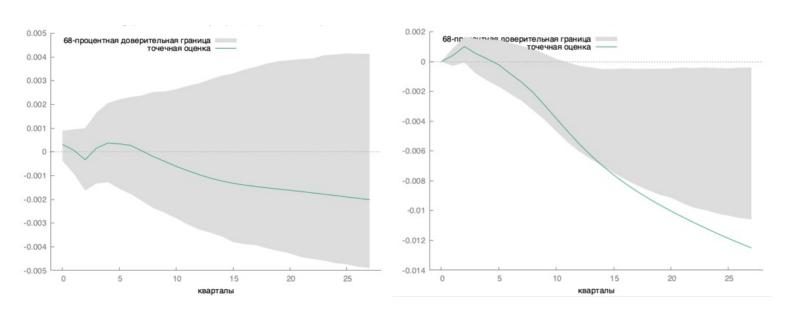
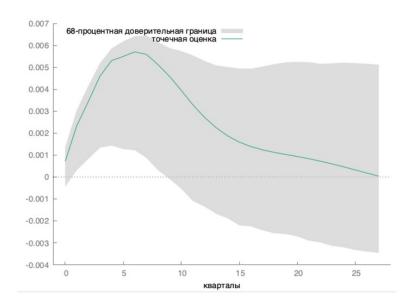



Рис. 1. Отклик з/п на шок безработицы. Собственные расчеты на основе данных OECD

Рис. 2. Отклик з/п на шок длительной безработицы. Собственные расчеты на основе данных OECD

Puc. 3. Отклик производительности на шок. длительной безработицы. Собственные расчеты на основе данных OECD

Отклик на рост производительности

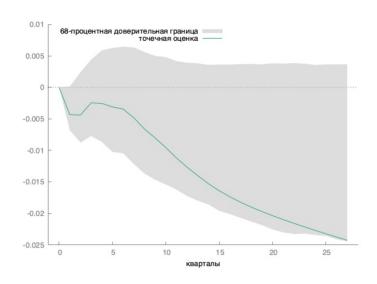


Рис. 4. Отклик безработицы на шок продуктивности. Собственные расчеты на основе данных OECD

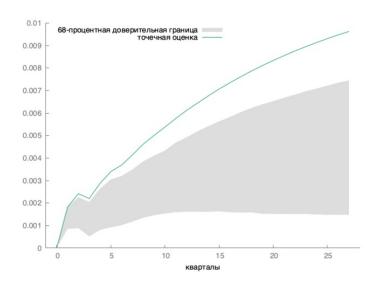
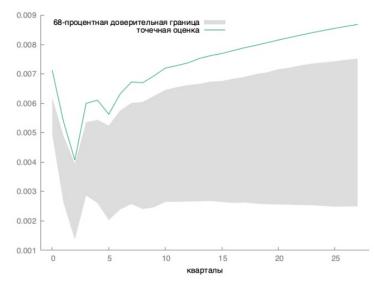



Рис. 5. Отклик з/п на шок производительности. Собственные расчеты на основе данных OECD

Puc. 6. Отклик производительности на собственный шок. Собственные расчеты на основе данных OECD

Проверка гипотезы изменений в физическом капитале

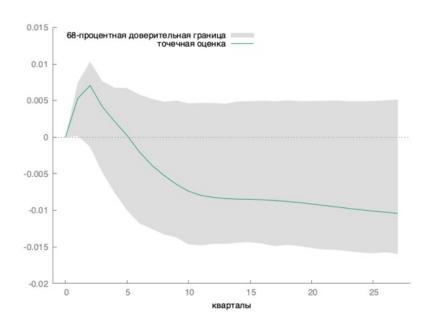


Рис. 7. Отклик безработицы на запасы капитала. Собственные расчеты на основе данных OECD

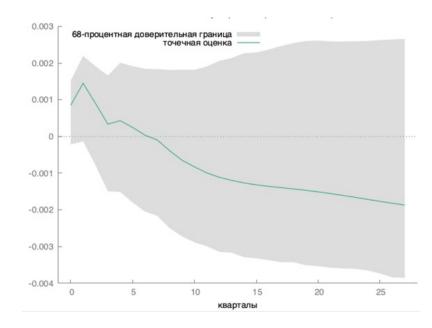


Рис. 8. Отклик запасов капитала на шок безработицы. Собственные расчеты на основе данных OECD

Тесты на единичный корень по данным РФ

- Данные: временной ряд с Q4 1992 по Q3 2021
- Необходимо провести тесты на линейность ряда
 - Тест Keenan (1985) нелинейность отвергается (p value > 5%)
 - Тест Tsay нелинейность подтверждается ($p value \sim 3.64 * 10^{-5}$)
- Линейные тесты:
 - Гипотеза гистерезиса подтверждается тестами PP и KPSS, отвергается тестом ADF

	ADF	PP	KPSS
Тестовая стат.	-3.5791	-3.1657	1.327
Критическое знач., 5%	-3,43	-3,43	0,14
p-value	0.03821	0.09705	0.01

Выводы

- Гипотеза гистерезиса на данных по Чехии не подтверждается результаты противоречат различным теориям о причинах эффекта
- На Российских данных стандартные тесты на единичный корень не дают однозначных результатов
- В дальнейших исследованиях можно использовать ограничения на долгосрочные связи, а также изменить экзогенную переменную и использовать силу профсоюзов в анализе
- Для анализа эффекта гистерезиса в России необходимо применить тесты, учитывающие нелинейность ряда и структурные сдвиги

Литература

- 1. Bisaglia, L. and Gerolimetto, M. "Testing for (non)linearity in economic time series: a Monte Carlo comparison", working paper series, No. 3, 2014, University of Padua, Department of Statistical Sciences. https://core.ac.uk/download/pdf/31144416.pdf
- 2. Blanchard, O. J., Summers, L. H. "Hysteresis and the European Unemployment Problem." NBER Macroeconomics Annual, Vol. 1, 1986, pp. 15-78. https://doi.org/10.3386/w1950
- 3. Blinder, A. S. "The Challenge of High Unemployment." American Economic Review, Vol. 78, No. 2, pp. 1-15, May 1988. https://doi.org/10.3386/w2489
- 4. Cross, R., Darby, J., Ireland, J., Piscitelli, L. "Hysteresis and unemployment: a preliminary investigation." The Science of Hysteresis, Vol. 1, 2005, pp. 667-699. https://doi.org/10.1016/B978-012480874-4/50011-7
- 5. Dickey, D. A.; Fuller, W. A. "Distribution of the Estimators for Autoregressive Time Series with a Unit Root". Journal of the American Statistical Association, 1979, 74 (366): 427–431. https://doi:10.1080/01621459.1979.10482531
- 6. Dutta, D. and Ahmed, N. "An aggregate import demand function for India: a cointegration analysis," Applied Economics Letters, Taylor & Francis Journals, 2004, vol. 11(10), pages 607-613. https://doi:10.1080/1350455042000271134

- 7. Friedman, M. "The Role of Monetary Policy." In: Estrin, S., Marin, A. (eds) Essential Readings in Economics, 1995, Palgrave, London. https://doi.org/10.1007/978-1-349-24002-9_11
- 8. Graafland, J. J., Huizinga, F. "Age-related minimum wages and hysteresis in unemployment." Economics Letters, Vol 32, No. 3, 1990, pp. 289-294. https://doi.org/10.1016/0165-1765(90)90114-G
- 9. Hughes, P. R. and Hutchinson, G. "Is unemployment irreversible?" Applied Economics, 1988, Vol. 20, pp. 31–42. https://doi.org/10.1080/00036848800000034
- 10. Kwiatkowski, D.; Phillips, P. C. B.; Schmidt, P.; Shin, Y. "Testing the null hypothesis of stationarity against the alternative of a unit root". Journal of Econometrics, *1992*, 54 (1–3): 159–178. https://doi:10.1016/0304-4076(92)90104-Y
- 11. Layard, R., Nickell, S. "The Causes of British Unemployment." National Institute Economic Review. 1985; 111(1): 62-85. https://doi:10.1177/002795018511100106
- 12. León-Ledesma, M.A. and McAdam, P. "Unemployment, hysteresis and transition." Scottish Journal of Political Economy, 2004, 51: 377–401. https://doi.org/10.1111/j.0036-9292.2004.00311.x
- 13. Lindbeck, A., and Snower, D. J. "Insiders versus Outsiders." Journal of Economic Perspectives, Vol. 15, No. 1, Winter 2001, pp. 165–188. https://doi.org/10.1257/jep.15.1.165
- 14. Manning A. "Wage Bargaining and the Phillips Curve: The Identification and Specification of Aggregate Wage Equations." Economic Journal. 1993; 103(416): 98–118. https://doi:10.2307/2234339
- 15. Nickell, S. "Unemployment: Questions and some Answers." Economic Journal. 1998; 108(448): 802–816. https://doi:10.1111/1468-0297.00316

- 16. Perron, P. The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis. Econometrica, 1989, 57 (6), 1361–1401. https://doi.org/10.2307/1913712
- 17. Phillips, P. C. B.; Perron, P. "Testing for a Unit Root in Time Series Regression."
- 18. Biometrika, 1988, 75 (2): 335–346. https://doi:10.1093/biomet/75.2.335
- 19. Piscitelli, L., Cross, R., Grinfeld, M. et al. "A Test for Strong Hysteresis." Computational
- 20. Economics 15, 59–78 2000. https://doi.org/10.1023/A:1008638827537
- 21. Rodriguez-Gil, A. "Hysteresis and labour market institutions. Evidence from the UK and the Netherlands." Empir Econ 55, 1985–2025 (2018). https://doi.org/10.1007/s00181-017- 1338-y
- 22. Smyth, D. J., Easaw, J. Z. "Unemployment hysteresis and the NAIRU: a ratchet model." Applied Economics Letters, Vol. 8, No. 6, June 2001, pp. 359–362. https://doi.org/10.1080/135048501750237775