Влияние кредитно-денежной политики на потребление домашних хозяйств (на примере России)

Егорова Яна 4 курс ЭФ МГУ

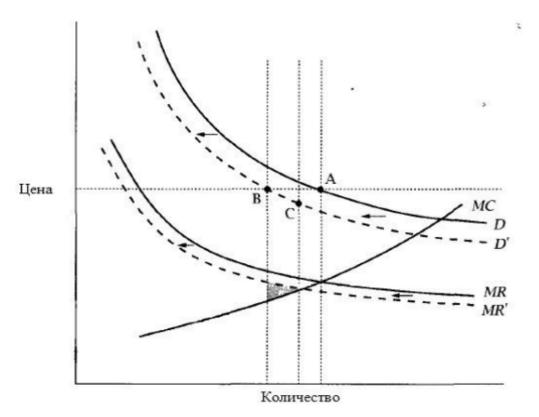
e-mail: yana.a.egorova@gmail.com

- **Цель:** анализ влияния КДП на потребление домашних хозяйств в рамках процентного канала в России
- Объект исследования: потребление домашних хозяйств в период после шока КДП
- **Предмет исследования:** реакция потребления в ответ на изменение КДП
- **Актуальность:** расходы на потребление вносят наибольший вклад в экономический рост (в России в 2012 году потребительский спрос обеспечил 3,3 п.п. из 3,4% роста)

Новая кейнсианская модель

Причины выбора НКМ

• Не подвержена критике Лукаса


• В SR деньги **HE** нейтральны, что соответствует эмпирическим наблюдениям

• Широкое распространение:

Банк Канады, Резервный банк Новой Зеландии, Центральный банк Чили, Банк Финляндии, Банк Англии, Банк Швеции, Резервный банк Австралии, Национальный банк Чехии, Национальный банк Венгрии, Национальный банк Польши

Жесткость цен

 Объясняется издержками меню в работах Akerlof и Yellen (1985) и Mankiw (1985)

Небольшие издержки меню оказывают большое значение на экономику в целом

Источник: Romer (1996), Advanced Macroeconomics

Домашние хозяйства

Оптимизационная задача:

$$E_t U = E_t \sum_{i=0}^{\infty} \beta^i \left[ln C_{t+i} + \frac{\varrho}{1-b} \left(\frac{M_{t+i}}{P_{t+i}} \right)^{1-b} - \gamma \frac{H_{t+i}^{1+\varphi}}{1+\varphi} \right] \longrightarrow \mathbf{max}$$

$$C_t + \frac{M_t}{P_t} + \frac{B_t}{P_t} = \left(\frac{W_t}{P_t}\right) \cdot H_t + \frac{M_{t-1}}{P_t} + (1 + i_{t-1}) \cdot \frac{B_{t-1}}{P_t} + Pr_t$$

Из монополистической конкуренции:

$$C_{\mathsf{t}} = \left[\int_{0}^{1} c_{\mathsf{j}\mathsf{t}}^{\frac{\varepsilon - 1}{\varepsilon}} \mathrm{d}\mathsf{j} \right]^{\frac{\varepsilon}{\varepsilon - 1}}$$

- индекс потребления на континууме товаров, которые
 - относительной цене

Минимизация совокупных потребительских расходов

$$\min_{c_{jt}} \int_{0}^{1} p_{jt} c_{jt} dj$$

$$\min_{c_{jt}}\int\limits_0^1 p_{jt}c_{jt}dj$$
 при ограничении $\left[\int\limits_0^1 c_{jt}^{rac{arepsilon-1}{arepsilon}}dj
ight]^{rac{arepsilon}{arepsilon-1}}\geq C_t$

Домашние хозяйства

Множитель Лагранжа в точке оптимума равен индексу цен: $\chi_t = \left[\int\limits_0^1 p_{jt}^{1-\varepsilon}\,dj\right]^{\frac{1}{1-\varepsilon}} \equiv P_{\rm t}$

Решение оптимизационной задачи:

$$rac{1}{C_t} = eta E_t \left(rac{(1+i_t)(\pi_{t+1}+1)}{c_{t+1}}
ight)$$
 оптимальная траектория движения потребительских расходов

$$\gamma \left(rac{ ext{M}_{ ext{t}}}{ ext{P}_{ ext{t}}}
ight)^{- ext{b}} C_t = rac{\lambda_t \left(1 - rac{1}{1+i_t} \cdot rac{P_t}{P_{t+1}} \cdot rac{P_{t+1}}{P_t}
ight)}{\lambda_t} = rac{i_t}{1+i_t}$$
 спрос на реальные запасы денежных средств

 $\gamma H_t^{\varphi} C_t = rac{W_t}{P_t}$ предельная норма замещения отдыха и потребления в точке оптимума

Новая кейнсианская IS: $x_t = E_t x_{t+1} - (i_t - E_t \pi_{t+1}) + u_t$

Фирмы

$$\min(rac{W_t}{\mathcal{D}}\cdot H_t + \Psi_t(c_{jt} - Z_t H_{jt})$$
 Минимизация затрат труда при заданном выпуске

$$\Psi_t = \frac{W_t}{p} Z_t$$

Множитель Лагранжа в точке оптимума равен реальной заработной плате с учетом корректировки на технологический шок

$$E_t \sum_{i=0}^\infty w^i arsigma^i [rac{p_{jt}}{P_{t+i}} c_{jt+i} - \psi_{t+i} c_{jt+i}]$$
 Максимизация ожидаемой прибыли фирмы

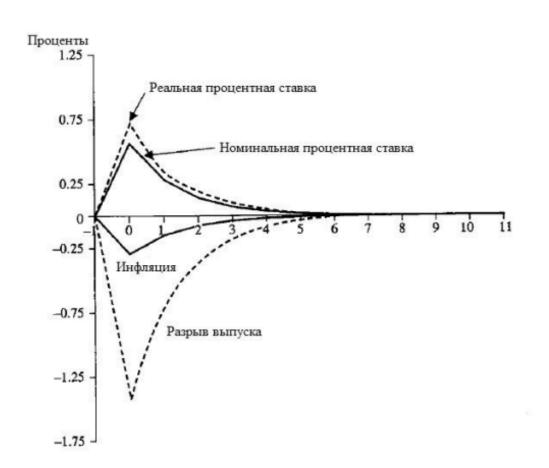
$$P_t^{1-arepsilon} = (1-\omega)(p_t^{*1-arepsilon}) + \omega P_{t-1}^{1-arepsilon}$$
 жесткость цен

$$\pi_{t} = \beta E_{t} \pi_{t+1} + k x_{t} + e_{t}$$

Ключевые уравнения в модели

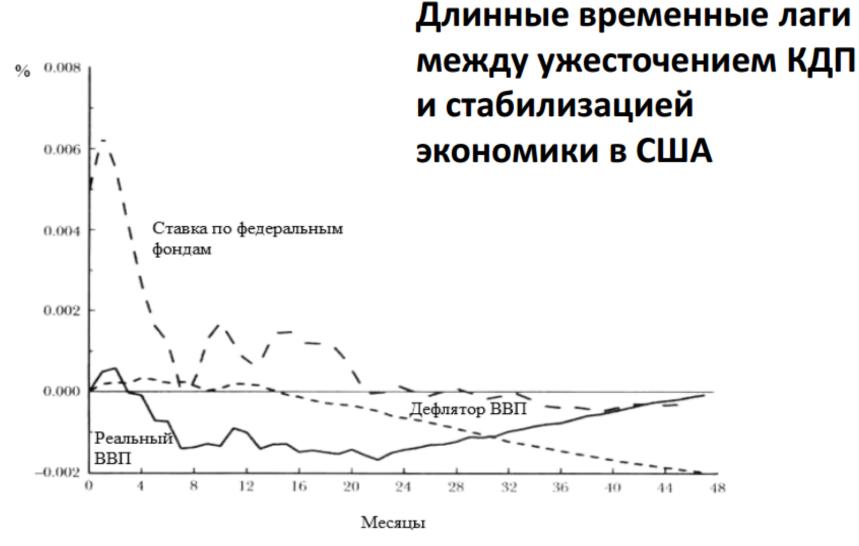
1) Новая кейнсианская IS:

$$x_t = E_t x_{t+1} - (i_t - E_t \pi_{t+1}) + u_t$$


2) Новая кейнсианская кривая Филлипса:

$$\pi_t = \beta E_t \pi_{t+1} + k x_t + e_t$$

3) Монетарное правило Тейлора:


$$i_t - \pi_t = \rho + (\Phi_{\pi} - 1)(\pi_t - \pi^*) + \Phi_{\nu}(y_t - y^*) + v_t$$

КДП в модели

Реакция Y, Pi и r на повышение центральным банком номинальной процентной ставки

Источник: Walsh (2003), Monetary Theory and Policy

Источник: Bernanke (1995), Inside the Black Box: The Credit Channel of Monetary Policy Transmission

Решение модели

• Процедура устранения трендов (Smets и Wouters 2002, Ireland 2004)

Предположение: все реальные переменные кроме количества труда содержат общий тренд, связанный с ростом эффективности труда

$$y_{t} = Z_{t}g_{t}H_{jt}$$

$$Z_{t} = Z_{t-1}^{0}Z^{1-\theta}e^{\varepsilon_{t}}$$

 θ - параметр, который характеризует силу
 связи между значениями функции технологии
 в различные периоды времени

Z - устойчивое значение технологии

heta - шок, обуславливающий колебания производительности

Стационарная система уравнений с реальными переменными

$$y_{t} = c_{t}$$

$$w_{t} = \gamma c_{t} h_{t}^{\varphi}$$

$$c_{t} = \frac{1}{\gamma} \frac{i_{t}}{1 + i_{t}} m_{t}^{b}$$

$$\frac{g}{c_{t}} = \beta E_{t} (\frac{i_{t} - \pi_{t+1}}{c_{t+1}})$$

$$y_{t} = z_{t} h_{t} / g$$

$$z_{t} = z_{t-1}^{\theta} Z^{1-\theta} e^{\varepsilon_{t}}$$

$$w_{t} = \frac{z_{t}}{g \mu}$$

- Номинальные переменные преобразуются в реальные
- Все переменные кроме труда содержат общий тренд, связанный с ростом эффективности труда
- Метод не является однозначным, поскольку для его применения нужно протестировать все реальные переменные на наличие общих трендов

Эмпирическая проверка работы процентного канала в России

- **Дробышевский (2008):** гипотеза о влиянии кредитно-денежной политики на выпуск не была отвергнута, однако канал процентных ставок показал плохие результаты
- **Леонтьева (2010):** канал процентных ставок был признан мало работоспособным
- Отсутствие основного инструмента процентной политики
- Малый объем операций на открытом рынке с облигациями правительства
- Акцент на валютный курс (сейчас приоритетом является таргетирование инфляции)
- Низкий уровень жесткости цен

Центр исследований Сбербанка РФ «Эффективность процентной политики Банка России в 2000-2011 г.г.»

Оценки коэффициентов в ответ на рост ставки процента

Метод Romer (2004)

Переменная/оценки	γ_1	γ_2	γ_3	γ_4
Выпуск	-0,64***	-0,20	-0,14	-0,17
	(0,21)	(0,22)	(0,22)	(0,23)
Инфляция	-0,00	-0,16**	-0,00	-0,00
	(0,00)	(0,07)	(0,01)	(0,01)
Номинальный	-0,00	-0,12**	-0,02	0,08*
валютный курс	(0,04)	(0,05)	(0,04)	(0,05)

Оценки коэффициентов в ответ на рост ставки процента после добавления переменной цены на нефть

Переменная/оценки	γ_1	γ_2	γ_3	γ_4
Выпуск	-0,65***	-0,27	-0,15	-0,15
	(0,21)	(0,24)	(0,23)	(0,25)
Инфляция	-0,00	-0,17**	-0,01	-0,00
	(0,00)	(0,07)	(0,01)	(0,01)
Номинальный	-0,00	-0,09**	-0,06	0,06*
валютный курс	(0,04)	(0,05)	(0,05)	(0,05)

Взаимосвязь потребления в России и процентной ставки

 Домашние хозяйства в России являются преимущественно кредиторами => канал дохода и канал замещения действуют в разном направлении

- Леонтьева (2012): построена эконометрическая модель, статистически значимой взаимосвязи обнаружить не удалось
- Обнаружена зависимость потребления от объемов банковского кредитования

Кредитно-денежная политика

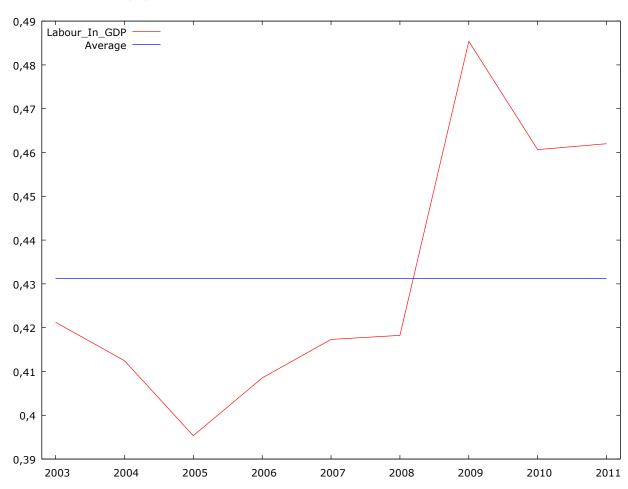
$$L = \frac{1}{2} \left[\alpha_1 (\pi_t - \pi^*)^2 + \alpha_2 (y_t - y^*)^2 \right]$$

Функция потерь общественного благосостояния

ЦБ объявляет цель и достигает ее

Хорошая репутация монетарных властей

Растет эффективность КДП


Fabiani (2005): половина всех фирм использует имеющуюся информацию об экономике для формулирования политики по установлению цен и принятия экономических решений

Сформулировать правило, достаточно жесткое для формирования доверия к ЦБ, и выполнить его - сложно, так как политика перестает быть гибкой

1) Параметр lpha - доля оплаты труда в ВВП

$$1 - \alpha = \frac{\varepsilon}{1 - \varepsilon} (1 - \tau) \frac{W_t H_t}{P_t Y_t}$$

где *т*- уменьшающий фактор, отражающий действие субсидии государства

Доля оплаты труда в общем выпуске за 2003-2011 г.г.

Источник: Оплата труда наемных работников и объем ВВП в текущих ценах согласно ОКВЭД из Федеральной службы государственной статистики

2) Параметр β - коэффициент дисконтирования в функции полезности $\beta = \frac{1}{1+i}$

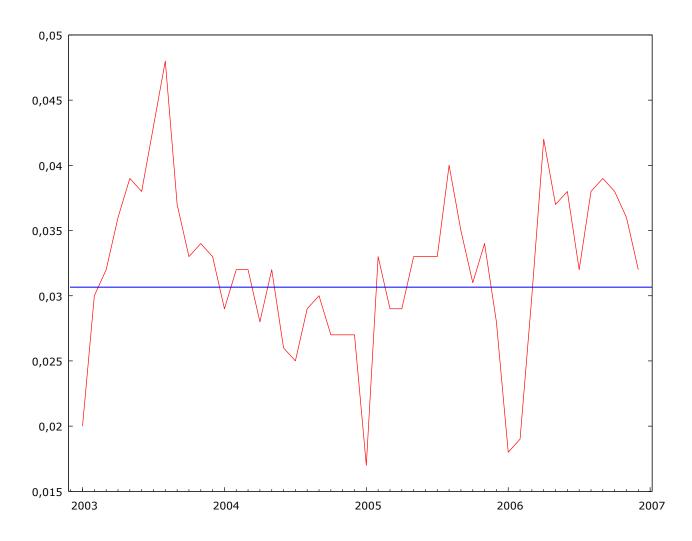
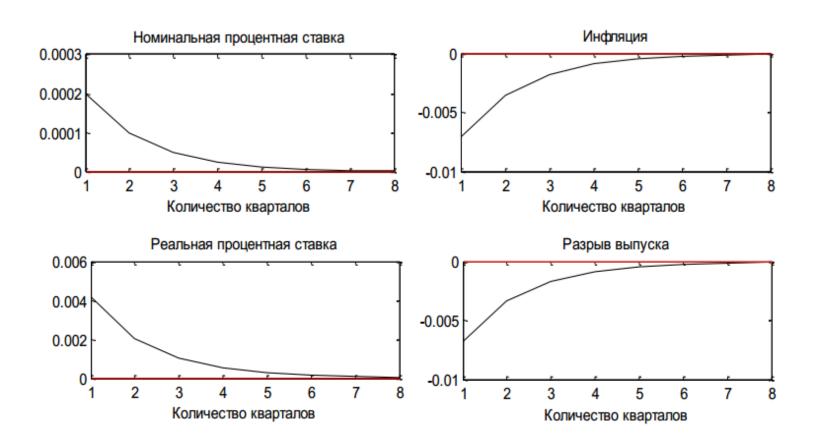


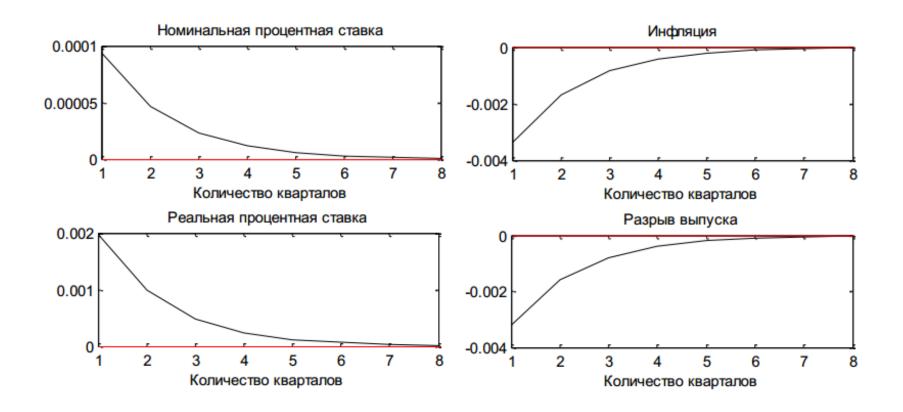
График реальной процентной ставки за период с 2003 по 2007 г.г. Источник: Сводные данные по процентным ставкам ЦБ РФ с коррекцией на ИПЦ из Федеральной службы государственной статистики

Калибровка параметров модели

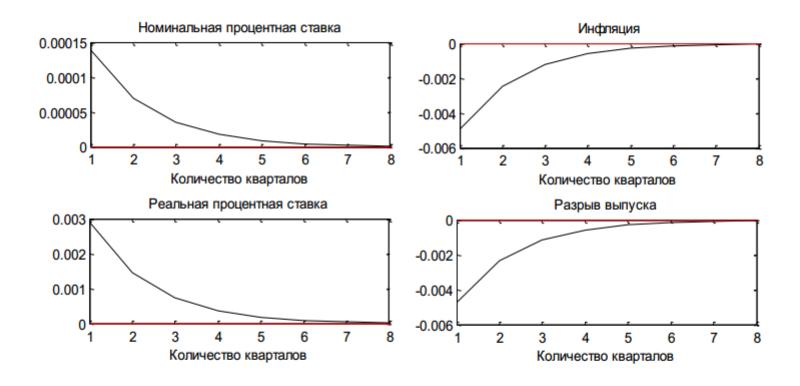

Параметр	Значение	Экономический смысл
$1-\alpha$	0,57	Эластичность выпуска по труду
β	0,9	Коэффициент дисконтирования в функции полезности домашних хозяйств
ε	6	Эластичность замещения дифференцированных товаров
$1/\varphi$	3	Эластичность предложения труда по заработной плате
$1/\sigma$	1	Эластичность потребления домашних хозяйств по заработной плате
θ	0,5	Вероятность того, что фирма не изменит цену товаров в течение времени t
$ ho_a$	0,96	Авторегрессионный коэффициент в AR(1) для общефакторной производительности
$ ho_v$	0,5	Авторегрессионный коэффициент в AR(1) для экзогенного компонента процентной ставки
σ_a	0,03	Стандартное отклонение в AR(1) для общефакторной производительности
σ_v	0,01	Стандартное отклонение в AR(1) для экзогенного компонента процентной ставки

Монетарное правило ЦБ:

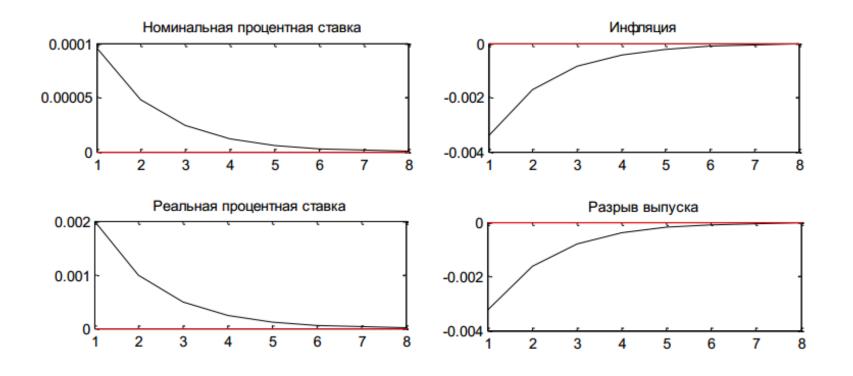
$$i_t - \pi_t = \rho + (\Phi_{\pi} - 1)(\pi_t - \pi^*) + \Phi_y(y_t - y^*) + v_t$$


	1 сценарий	2 сценарий	3 сценарий	4 сценарий
Φ_{π}	1,2	2	2	1
$\Phi_{\mathbf{y}}$	0,2	1	0	2

1. Слабая реакция ЦБ на инфляцию и разрыв выпуска в равной степени

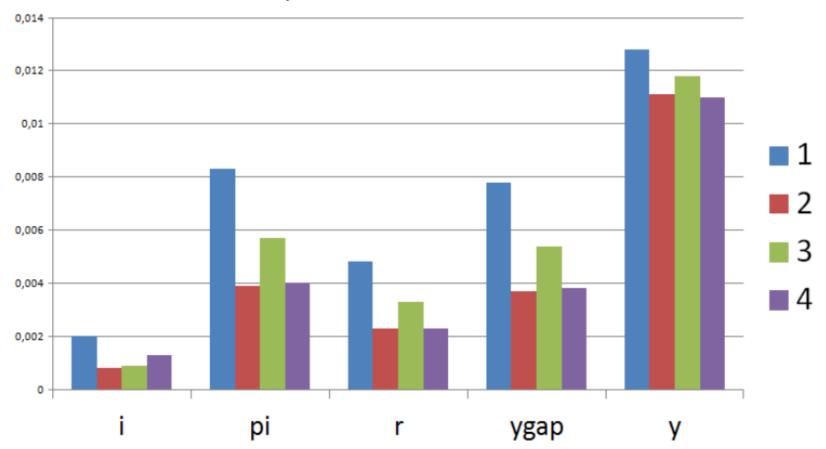

$$L_1 = 4,23$$

2. Сильная реакция ЦБ на инфляцию и разрыв выпуска в равной степени


$$L_2 = 0.94$$

3. Реакция ЦБ только на инфляцию

$$L_3 = 1,99$$


4. Сильная реакция ЦБ на инфляцию и разрыв выпуска в равной степени

$$L_4 = 0.98$$

	1 сценарий	2 сценарий	3 сценарий	4 сценарий
Потери общественного благосостояния	$L_1 = 4,23$	$L_2 = 0.94$	$L_3 = 1,99$	$L_4 = 0,98$

Стандартные отклонения в модели

Выводы исследования

- Работоспособность процентного канала кредитноденежной политики в России
- Сильное реагирование на отклонения инфляции и выпуска от целевого уровня приводит к увеличению общественного благосостояния
- В случае если домашние хозяйства обладают информацией о политике монетарных властей и дают ей верное толкование, такая политика приведет к увеличению потребления и, следовательно, экономическому росту в стране
- Реагирование на отклонение выпуска от целевого значения одновременно с корректированием инфляции лучше с точки зрения общественного благосостояния, чем просто таргетирование инфляции

Список литературы

- Bernanke B., Mihov I. Measuring Monetary Policy. The Quarterly Journal of Economics, Vol. 113, No.3 (Aug.,1998), pp. 869-902.
- Canzoneri B. Cumby E. Diba T. The Cost of Nominal Rigidity in NNS Models. Journal of the European Economic Association, Vol. 4, No. 2/3, Apr. -May, 2006, pp. 575-584.
- Christiano L.J., Eichenbaum M., Evans C.L Nominal Rigidities and the Dynamic Effects of A Shock to Monetary Policy // Federal Reserve Bank of Cleveland Working Paper. May 2001 No 7.
- Galí, J., Monacelli, T. Monetary Policy and Exchange Rate Volatility in a Small Open
- Economy, The Review of Economic Studies, 2005. 72, 3, pp.707–734.
- Fabiani S. The pricing behaviour of fi rms in the euro area: new survey evidence. Working paper research
 №76 November 2005.
- Ireland, P.N. (2004). A Method for Taking Models to the Data, Journal of Economic Dynamics and Control, 28, 6, 1205–1226.
- Romer, D. Advanced Macroeconomics. 3nd ed. N. Y., 1996. 540 p.
- Smets, F., Wouters, R. (2002). An Estimated Stochastic Dynamic General Equilibrium Model of the Euro Area, ECB Working Paper Series, 171.
- Walsh C.E. Monetary theory and policy: 2nd edition, The MIT Press. 2003. 232-240 pp.
- **Демиденко М.** Модель среднесрочного прогнозирования и проектирования монетарной политики // Банковский вестник. 2008. №31.
- **Дробышевский С.** Анализ трансмиссионных механизмов денежно-кредитной политики в российской экономике В. М.: ИЭПП, 2008. 87 с.: ил. (Научные труды / Ин-т экономики переходного периода; № 116Р).
- Зарецкий А. Поиск оптимального варианта монетарной политики в Беларуси: результаты простой DSGE модели// Исследовательский центр ИПМ. 2012.
- Леонтьева Е. Механизм кредитно-денежной трансмиссии в России // ЦЭФИР. 2012, март №175.
- Юдаева К., Синяков А. «Эффективность процентной политики Банка России в 2000-2011 г.г.» //
 Обзор Центра макроэкономических исследований Сбербанка России, декабрь 2011.