Моделирование взаимосвязи стабильности банковской системы и экономического роста.

Эмпирическая часть (1): применение подхода Панзара-Роуза к определению уровня конкуренции в российской банковской системе

План выступления

- 1. Цель, задачи;
- 2. Спецификация уравнения дохода и уравнения цены по российской банковской системе (подход Панзара-Роуза), а также спецификация уравнения прибыльности активов (подход Шаффера)
- 3. Формирование базы данных по российским банкам на основе форм 101 и 102 отчетности перед Банком России:
 - Доступный период форм 101 и 102. Объем «постоянной» на доступном периоде выборки.
 - Ключевые агрегаты, формируемые на основе форм 101 и 102 и применяемые для анализа в данной работе, а также их графики.
- 4. Оценка уравнения цены и уравнения дохода на основе подхода Панзара-Роуза:
 - Выбор наиболее существенных факторов;
 - сопоставление результатов и интерпретация коэффициентов (в рамках модели по объединенным данным, pooled regression);
- 5. Выбор модели уравнения дохода модель по объединенным данным против моделей на панельных данных с применением фиксированных и случайных эффектов;
- 6. Модель уравнения дохода на основе панельной регрессии с фиксированными эффектами: расчет H-stat и проведение тестов на тип рыночной структуры;
- 7. Сопоставление time-invariant и time-varying H-stat: цикличность конкуренции;
- 8. Уравнение прибыльности активов (ROA): расчет E-stat Шаффера как критерий качества оценки H-stat;
- 9. Оценка динамической версии уравнения дохода как альтернатива статической версии: применение метода Ареллано-Бонда оценки моделей с динамическими панельными данными;
- 10. Финальные этапы эмпирической части диссертации
- **1. Цель**: определение наиболее адекватного способа измерения уровня конкуренции в российской банковской системе для его последующего использования в моделировании взаимосвязи стабильности банковской системы и динамики реального ВВП

2. Спецификация уравнения дохода и уравнения цены по российским банкам

2.1 Уравнение дохода (подход Панзара-Роуза):

$$\begin{split} & \ln II_{i,t} = \alpha_i + \beta \cdot FIP_{i,t} + \gamma \cdot EXOG_{i,t} + \delta \cdot \ln TA_{i,t} + \varepsilon_{i,t} = \alpha_i + \beta_1 \cdot \ln AFR_{i,t} + \beta_2 \cdot \ln PPE_{i,t} + \beta_3 \cdot \ln PONILE_{i,t} \\ & + \gamma_1 \cdot \ln \frac{OI_{i,t}}{II_{i,t}} + \gamma_2 \cdot \ln \frac{EQ_{i,t}}{TA_{i,t}} + \gamma_3 \cdot \ln \frac{LNS_{i,t}}{TA_{i,t}} + \gamma_4 \cdot \ln \frac{ERA_{i,t}}{ERP_{i,t}} + \gamma_5 \cdot \ln \frac{ONEA_{i,t}}{TA_{i,t}} + \gamma_6 \cdot \ln \frac{DPS_{i,t}}{F_{i,t}} + \delta \cdot \ln TA_{i,t} + \varepsilon_{i,t} \end{array} \tag{1}$$

где:

- ➤ FIP (Factor Input Prices) AFR (Average Funding Rate), PPE (Price of Personnel Expense) и PONILE (Price of Other Non-interest and non-personnel expenses): цены привлеченных средств (фондирования), персонала и прочих факторов соответственно.
- *EXOG* (Экзогенные по отношению к доходу факторы) − 6 нижеследующих факторов:
 - $\checkmark \frac{OI_{i,t}}{II_{i,t}}$ отношение прочих доходов (общие минус процентные) к процентным доходам.

Отражает степень интеграции банка в финансовую систему (объемы операций по «небанковским» операциям, т.е. на валютном и фондовом рынках)

- \checkmark $\frac{EQ_{i,t}}{TA_{i,t}}$ отношение собственного капитала к активам. Отражает общий уровень риска,
 - принимаемого банком (эффект финансового рычага)
- \checkmark $\frac{LNS_{i,t}}{TA_{i,t}}$ отношение кредитов населению и нефинансовым предприятиям к активам.

Отражает общий уровень кредитного риска, принимаемого банком

 \checkmark $\frac{ERA_{i,t}}{ERP_{i,t}}$ — отношение платных активов (Earning Assets) к платным пассивам (Earning

Passives). Отражает интенсивность освоения банком платных пассивов (чем больше по сравнению с единицей, тем интенсивней, и наоборот).

 \checkmark $\frac{ONEA_{i,t}}{TA_{i,t}}$ — отношение прочих неплатных активов к активам. Отражает «нерабочую» — не

приносящую значимого дохода – часть активов

✓ $\frac{DPS_{i,t}}{F_{i,t}}$ — отношение депозитов населения и нефинансовых предприятий к счетам и депозитам населения и нефинансовых предприятий. Отражает потенциал наращивания процентных доходов (чем меньше доля счетов и, соответственно, выше доля депозитов, тем

больше возможности банка использовать эти средства на расширение кредитного портфеля)

- > TA (Total Assets) совокупные активы. Масштабирующая переменная.
- $\triangleright \quad \varepsilon_{i,t} i.i.d.(o,\sigma^2)$

$$H_{stat} = \beta_1^{II} + \beta_2^{II} + \beta_3^{II} = \begin{cases} \leq 0 \Rightarrow \text{монополия} \\ \in (0;1) \Rightarrow \text{монополистическая конкуренция} \end{cases}$$
 (2) $= 1 \Rightarrow cosepwehhas конкуренция$

2.2 Уравнение цены (подход Панзара-Роуза): «ошибочная» спецификация

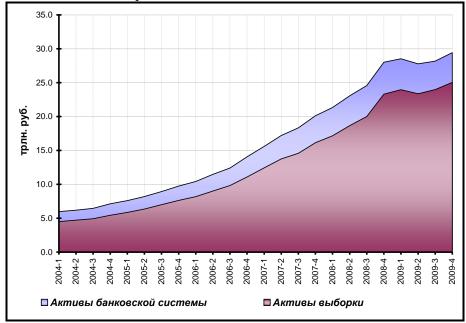
Уравнение (1), в котором зависимая переменная $\ln H_{i,t}$ замещена на переменную $\ln \frac{H_{i,t}}{TA_{i,t}}$, отражающую цену активов.

2.3 Уравнение прибыльности активов (ROA): подход Шаффера (будет изложено в п.8)

Уравнение (1), в котором зависимая переменная $\ln II_{i,t}$ замещена на переменную $\ln ROA_{i,t} = \ln \frac{\Pr ofit_{i,t}}{TA_{i,t}},$ отражающую прибыльность активов.

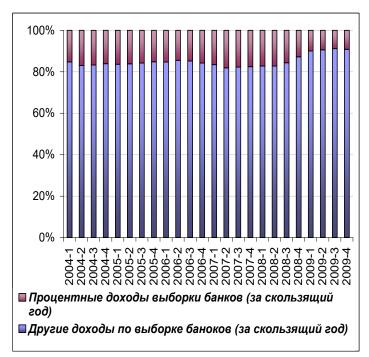
$$E_{\textit{stat}} = oldsymbol{eta}_{1}^{\textit{ROA}} + oldsymbol{eta}_{2}^{\textit{ROA}} + oldsymbol{eta}_{3}^{\textit{ROA}} = egin{cases} = 0 \Rightarrow \textit{рынок в равновесии} \ \neq 0 \Rightarrow \textit{иначе} \end{cases}$$

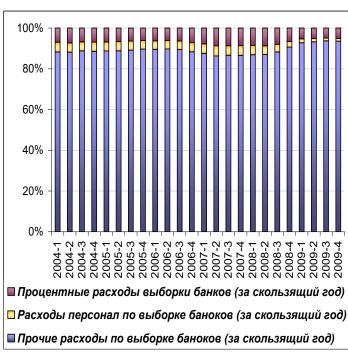
3. Формирование базы данных по российским банкам


3.1 Первичная информация

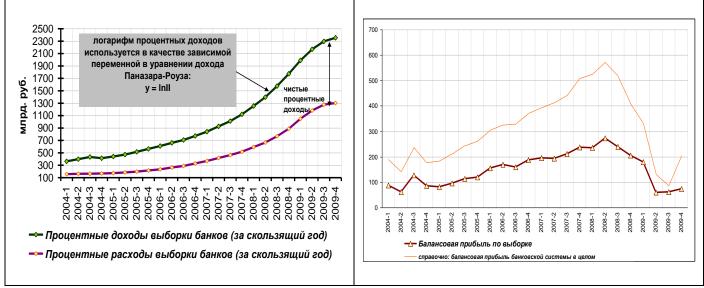
Источники данных:	Форма 101	Форма 102				
Информация, содержащаяся в формах: счета первого и второго порядков по каждому банку, на основе которых формируются показатели	актива и пассива банков	доходов, расходов и прибыли банков				
Ключевые агрегаты, рассчитываемые на основе форм	Актив: кредиты, приобретенные ценные бумаги, иностранные активы, абсолютно ликвидные активы и прочие. Пассив: привлеченные средства, выпущенные ценные бумаги, иностранные пассивы и прочие	Доходы: процентные доходы, операционные доходы (от операций с ценными бумагами и от участия в капитале других организаций, а также положительная переоценка), прочие доходы (штрафы, пени, неустойки и др.) Расходы: процентные расходы, операционные расходы (по операциям с ценными бумагами, расходы на персонал, расходы на физический капитал, а также отрицательная переоценка), прочие расходы				
Периодичность	Ежемесячно	Ежеквартально				
Доступность на сайте Банка России	С января 2004 г.	С 1 квартала 2004 г.				
Объем «постоянной» выборки банков	525 банков, доля в активах банковской системы составляет поря 85%. При этом 90% выборки занимают 51 крупных банка (актив более 50 млрд. руб.)					

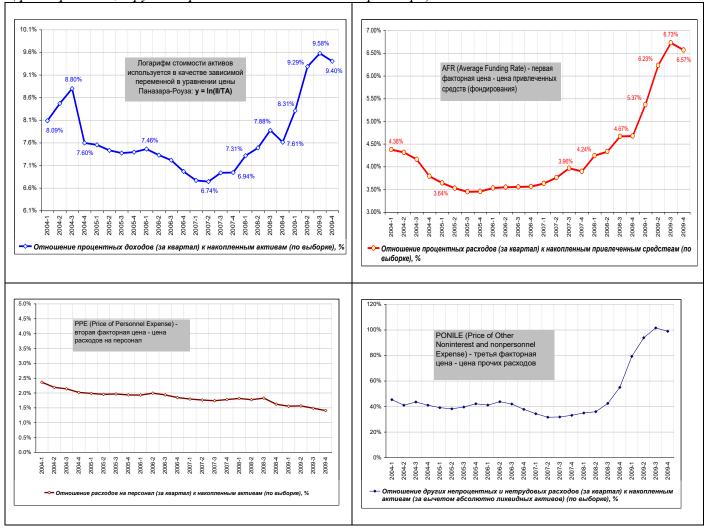
Источник: составлено автором


3.2 Ключевые агрегаты, используемые для определения уровня конкуренции на основе подхода Панзара-Роуза


3.2.1 Масштаб «постоянной» выборки банков и банковской системы: динамика активов

Источник: данные Банка России, расчеты автора


3.2.2 Структура доходов и расходов «постоянной» выборки банков»: диспропорции между "банковскими" и "небанковскими" источниками доходов банков


Источник: данные Банка России, расчеты автора

3.2.3 Чистые процентные доходы «постоянной» выборки банков как основной источник их прибыли (балансовой, т.е. после формирования резервов под возможные потери и обесценение)

Источник: данные Банка России, расчеты автора

3.2.4 Стоимость активов «постоянной» выборки банков и входные факторные цены ресурсов (фондирования, труда и прочего – композитного – фактора)

Источник: данные Банка России, расчеты автора

4. Оценка уравнения цены и уравнения дохода на основе подхода Панзара-Роуза

4.1 Уравнение цены (time-invariant H-stat (pooled regression, y = lnII / lnTA))

4.1.1 Исходная спецификация

- . tsset regn_id quart, quarterly
- reg lnii_to_ta lnafr lnonile_to_phys_act lnpe_to_ta lnoi_to_ii lneq_to_ta lnlns_to_ta lnonea_to_ta lnera_to_erp lndps_to_f

Source		SS	df	MS	Number of obs =	=	12033
 	+				F(9, 12023) =	=	4158.07
Model		1645.2449	9	182.804989	Prob > F =	=	0.0000
Residual		528.577421	12023	.043963854	R-squared =	=	0.7568
 	+				Adj R-squared =	=	0.7567
Total		2173.82233	12032	.180670074	Root MSE =	=	.20968

lnii_to_ta	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
lnafr	.1354533	.0031229	43.37	0.000	.1293318	.1415748
<pre>lnonile to~t </pre>	.3833724	.0046185	83.01	0.000	.3743194	.3924254
lnpe to ta	.1043862	.0030155	34.62	0.000	.0984753	.110297
lnoi to ii	5280757	.0055501	-95.15	0.000	5389549	5171965
lneq to ta	.0361332	.0038974	9.27	0.000	.0284936	.0437727
lnlns to ta	.1525013	.0041119	37.09	0.000	.1444413	.1605614
lnonea to ta	0609546	.0045027	-13.54	0.000	0697807	0521285
lnera to erp	.0216995	.0035037	6.19	0.000	.0148316	.0285674
<pre>lndps_to_f </pre>	.0028091	.0028481	0.99	0.324	0027735	.0083918
_cons	.6884747	.0313546	21.96	0.000	.6270147	.7499347

Источник: расчеты автора

4.1.2 Исходная спецификация: а) без незначимого фактора доли депозитов в депозитах и счетах, б) с учетом структур групп банков (госбанки, дочерние банки нерезидентов, частные московские банки, частные региональные банки)

. reg lnii_to_ta lnafr lnonile_to_phys_act lnpe_to_ta lnoi_to_ii lneq_to_ta lnlns_to_ta lnonea_to_ta lnera_to_erpdgos dforgn dmosc

Source	SS	df	MS		Number of obs F(11, 12076)	
Model Residual		11 152 12076 .043			Prob > F R-squared Adj R-squared	= 0.0000 = 0.7636
Total	2203.31259	12087 .182	2287796		Root MSE	= .2077
lnii_to_ta	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnafr	.1342872	.0028376	47.32	0.000	.1287251	.1398492
lnonile to~t	.3818702	.0045148	84.58	0.000	.3730205	.3907199
lnpe to ta	.1203155	.0030732	39.15	0.000	.1142915	.1263395
lnoi to ii	5470502	.0055845	-97.96	0.000	5579968	5361036
lneq to ta	.0377357	.0038613	9.77	0.000	.0301669	.0453044
lnlns to ta	.1544077	.0040856	37.79	0.000	.1463994	.1624161
lnonea to ta	066794	.0044196	-15.11	0.000	075457	058131
lnera to erp	.0133539	.0030071	4.44	0.000	.0074594	.0192484
_ dgos	.0689589	.0155285	4.44	0.000	.0385205	.0993973
dforgn	.1175405	.0088075	13.35	0.000	.1002763	.1348046
dmosc	.0804913	.0050274	16.01	0.000	.0706367	.0903458
cons	.6891492	.0288331	23.90	0.000	.6326318	.7456666

Источник: расчеты автора

4.2 Уравнение дохода (time-invariant H-stat (pooled regression, y = lnII, lnTA - переменная масштаба)

. reg lnii lnafr lnonile_to_phys_act lnpe_to_ta lnoi_to_ii lneq_to_ta lnlns_to_ta lnonea to ta lnera to erp lnta

Source	SS	df	MS		Number of obs F(9, 12078)	
'	45371.0039 530.906562		43956496		Prob > F R-squared	= 0.0000 = 0.9884
Total	45901.9105				Adj R-squared Root MSE	
lnii		Std. Err	t	P> t	[95% Conf.	Interval]
,	.1257454	.002933	42.87	0.000	.1199963	.1314946
lnonile_to~t	.3833218	.004557	84.12	0.000	.3743893	.3922543
lnpe_to_ta	.1202198	.0032931	36.51	0.000	.1137648	.1266749
lnoi_to_ii	5385475	.0056526	-95.27	0.000	5496276	5274674
lneq_to_ta	.0578424	.0043444	13.31	0.000	.0493267	.066358
lnlns to ta	.1507007	.0041044	36.72	0.000	.1426553	.158746
lnonea to ta	0619749	.0044505	-13.93	0.000	0706985	0532512
lnera_to_erp	.0176181	.0029993	5.87	0.000	.0117391	.0234971
lnta	1.014494	.0014062	721.45	0.000	1.011738	1.01725
_cons	-3.95594	.0293222	-134.91	0.000	-4.013416	-3.898464

5. Выбор модели уравнения дохода – модель по объединенным данным против моделей на панельных данных с применением фиксированных и случайных эффектов

5.1 «Фиксированные эффекты» против «объединенной выборки»

. xtreg lnii lnafr lnonile_to_phys_act lnpe_to_ta lnoi_to_ii lneq_to_ta lnlns_to_ta lnonea to ta lnera to erp lndps to f lnta dgos dmosc dforgn, fe

Fixed-effects Group variable		cession		Number of obs = 12033 Number of groups = 520				
	= 0.9459 n = 0.9913 L = 0.9878	Obs per group: min = avg = 2 max =						
corr(u_i, Xb)	= 0.5072			F(10,11503 Prob > F) = =			
lnii	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
<pre>lnonile_to~t lnpe_to_ta lnoi_to_ii lneq_to_ta lnlns_to_ta lnonea_to_ta lnera_to_erp lndps_to_f</pre>	.3942327 .1782619 5488195 .0589371 .117749 0330249 .0100794 .0093023 .975059 (dropped)	.004505 .0039579 .0059008 .0052262 .0042092 .0042936 .0033925 .0029322	42.01 87.51 45.04 -93.01 11.28 27.97 -7.69 2.97 3.17 380.30	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002	.1185475 .3854021 .1705038 560386 .0486928 .1094982 041441 .0034295 .0035547 .9700333	.4030633		

Вывод: Модель с фиксированными эффектами лучше, чем модель по объединенным данным, в соответствии с F-тестом

5.2 «Случайные эффекты» против «объединенной выборки»: тест Хаусмана

```
. estimates store fixed
. xtreg lnii lnafr lnonile_to_phys_act lnpe_to_ta lnoi_to_ii lneq_to_ta lnlns_to_ta
lnonea to ta lnera to erp lndps to f lnta dgos dmosc dforgn, re
                                                          Number of obs = 12033
Random-effects GLS regression
Group variable: regn id
                                                          Number of groups =
R-sq: within = 0.9459
                                                          Obs per group: min =
        between = 0.9915
                                                                                        23.1
                                                                     avg =
        overall = 0.9882
                                                                           max =
                                                         Wald chi2(13) = 268072.42
Random effects u i ~ Gaussian
corr(u i, X) = 0 (assumed)
                                                         Prob > chi2
______
         lnii | Coef. Std. Err. z P>|z| [95% Conf. Interval]
______
lnafr | .125911 .0029273 43.01 0.000 .1201736 .1316484
lnonile_to~t | .3943838 .0044272 89.08 0.000 .3857066 .4030609
lnpe_to_ta | .1720423 .0038478 44.71 0.000 .1645009 .1795838
  lnoi to ii | -.5525476 .005784 -95.53 0.000
                                                                    -.563884 -.5412113
 lnlns_to_ta | .0307334 .0050758 11.57 0.000 .0487849 .0686819 .001850 ta | .1235989 .0041415 29.84 0.000 .1154817 .1317161 .10000 ta | -.0373804 .0042422 .001
Inins_to_ta | .1235989 .0041415 29.84 0.000 .1154817 .1317161 lnonea_to_ta | -.0373804 .0042422 -8.81 0.000 -.0456949 -.0290659 lnera_to_erp | .008735 .0033452 2.61 0.009 .0021784 .0152915 lndps_to_f | .0097993 .0028853 3.40 0.001 .0041442 .0154544 lnta | .9850738 .0023309 422.61 0.000 .9805052 .9896423 dgos | .1899504 .0596754 3.18 0.001 .0729887 .306912 dmosc | .0961453 .0163331 5.89 0.000 .0641331 .1281576 dforgn | .1483783 .031735 4.68 0.000 .086179 .2105777
       _cons | -4.063927 .0310439 -130.91 0.000 -4.124772 -4.003082
_______
     sigma_u | .15954862
     sigma_e | .14605835
         rho | .54405671 (fraction of variance due to u_i)
```

. hausman fixed

	Coeffi	cients		
1	(b)	(B)	(b-B)	sqrt(diag(V b-V B))
	fixed	•	Difference	S.E.
lnafr	.1243493	.125911	0015617	.0004377
<pre>lnonile to~t </pre>	.3942327	.3943838	0001511	.0008336
lnpe to ta	.1782619	.1720423	.0062196	.0009271
lnoi to ii	5488195	5525476	.0037281	.0011682
lneq to ta	.0589371	.0587334	.0002037	.0012447
lnlns to ta	.117749	.1235989	0058499	.0007517
lnonea to ta	0330249	0373804	.0043555	.0006626
lnera to erp	.0100794	.008735	.0013444	.0005644
<pre>lndps_to_f </pre>	.0093023	.0097993	000497	.0005222

lnta | .975059 .9850738 -.0100147 .001068

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(10) = $(b-B)'[(V_b-V_B)^(-1)](b-B)$ = 547.98Prob>chi2 = 0.0000

Вывод: Оценивая модель со случайными эффектами, мы полагаем, что эти случайные эффекты не коррелируют с регрессорами. Тест Хаусмана — на сравнение моделей со случайными и фиксированными эффектами — показал, что различия между оцененными коэффициентами по модели со случайными эффектами и по модели с фиксированными эффектами носят систематический характер, а значит, предположение модели со случайными эффектами о некоррелированности ошибок и регрессоров неверно. Оценки коэффициентов в модели со случайными эффектами являются смещенными, и поэтому более адекватной является модель с фиксированными эффектами. Кроме того, это означает, что корреляция между регрессорами и случайными эффектами не является нулевой, что выглядит вполне логично ввиду того, что в состав регрессоров входят так называемые bank specific factors (BSF), значения которых уникальны пля кажлого банка.

6. Модель уравнения дохода на основе панельной регрессии с фиксированными эффектами: расчет H-stat и проведение тестов на тип рыночной структуры

6.1 Pacчет H-stat

Итак, конечной версией уравнения дохода будем считать модель (5.1) с фиксированными эффектами:

$$\ln II_{i,t} = -4.02 + 0.124 \cdot \ln AFR_{i,t} + 0.394 \cdot \ln PPE_{i,t} + 0.178 \cdot \ln PONILE_{i,t} - 0.549 \cdot \ln \frac{OI_{i,t}}{II_{i,t}} + 0.059 \cdot \ln \frac{EQ_{i,t}}{TA_{i,t}} + 0.118 \cdot \ln \frac{LNS_{i,t}}{TA_{i,t}} - 0.033 \cdot \ln \frac{ONEA_{i,t}}{TA_{i,t}} + 0.010 \cdot \ln \frac{ERA_{i,t}}{ERP_{i,t}} + 0.009 \cdot \ln \frac{DPS_{i,t}}{F_{i,t}} + 0.975 \cdot \ln TA_{i,t}$$
(3)

Врезка 1. «Качество подгонки» в моделях на панельных данных с фиксированными эффектами

Какой R^2 точнее отражает «качество подгонки» (goodness of fit): R^2_{within} , $R^2_{between}$, $R^2_{overall}$? - ... никакой. Нужно применять более корректную процедуру оценки R^2 в моделях на панельных данных с фиксированными эффектами – метод LSDV (*Least Squares Dummy Variables*). Суть: каждый фиксированный эффект заменяется на фиктивную переменную, после чего производится оценка МНК, что позволяет получить обычный R^2 :

```
. areg lnii lnafr lnonile_to_phys_act lnpe_to_ta lnoi_to_ii lneq_to_ta lnlns_to_ta lnonea_to_ta lnera_to_erp lndps_to_f lnta, absorb(regn_id)
```

Linear regression, absorbing indicators

Number of obs = F(10, 11503) = 2

F(10, 11503) =20118.25 Prob > F = 0.0000 R-squared = 0.9946 Adj R-squared = 0.9944

12033

Root MSE = .14606

lnii	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
lnafr	.1243493	.0029598	42.01	0.000	.1185475	.1301511
nonile to~t	.3942327	.004505	87.51	0.000	.3854021	.4030633
lnpe to ta	.1782619	.0039579	45.04	0.000	.1705038	.18602
lnoi to ii	5488195	.0059008	-93.01	0.000	560386	537253
lneq to ta	.0589371	.0052262	11.28	0.000	.0486928	.0691814
lnlns to ta	.117749	.0042092	27.97	0.000	.1094982	.1259997
nonea to ta	0330249	.0042936	-7.69	0.000	041441	0246087
nera to erp	.0100794	.0033925	2.97	0.003	.0034295	.0167293
lndps to f	.0093023	.0029322	3.17	0.002	.0035547	.0150499
lnta	.975059	.0025639	380.30	0.000	.9700333	.9800848
_cons	-4.016155	.0301745	-133.10	0.000	-4.075302	-3.957008
regn id	F(519,	11503) =	25.170	0.000	(520	categories)

$$H_{stat} = 0.124 + 0.394 + 0.178 = 0.697$$
 (4)

6.2 Тесты на тип рыночной структуры (на основе расчетной H-stat)

Стандартный набор тестов Вальда на линейное ограничение, применяемых во всех исследованиях:

6.2.1 Совершенная конкуренция – отвергается на 1% уровне

$$H_0: H_{stat} = 1$$
 VS $H_{alt}: H_{stat} \neq 1$ (5) — двусторонний тест . test lnafr+lnpe_to_ta+lnonile_to_phys_act=1 F(1, 11503) = 3409.40, Prob > F = 0.0000

6.2.2 Монополия – отвергается на 1% уровне

6.2.3 Монополистическая конкуренция – не отвергается на 1% уровне

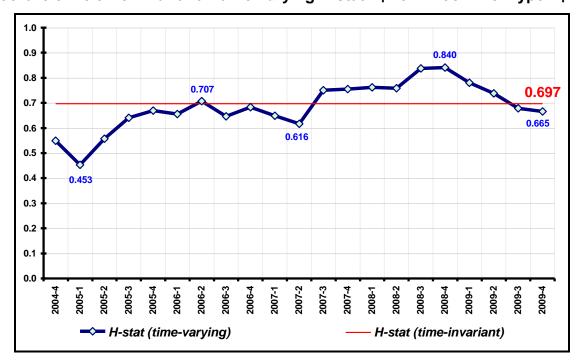
$$\{H_0: H_{stat} < 1 \ VS \ H_{alt}: H_{stat} \ge 1 \ (6.1), \ H_0: H_{stat} > 0 \ VS \ H_{alt}: H_{stat} \le 0 \ (6.2)$$

Нужно проводить два односторонних теста.

Идея: сначала проводим двусторонний тест Вальда с одним линейным ограничением, получаем F-stat и соответствующее p-value. Поскольку линейное ограничение одно, то нижняя степень свободы F-stat будет равна единице, что позволяет перейти к t-stat одностороннего теста.

(6.1)
$$H_0: H_{stat} < 1$$
 VS $H_{alt}: H_{stat} \ge 1$

№1. $H_0: H_{stat} = 1$ VS $H_{alt}: H_{stat} \neq 1$ - уже проверяли в 6.2.1. Важно, что получили F(1, 11503) = 3409.40, Prob > F = 0.0000. Поскольку $\forall d > 0$ $F(1,d) = t^2(d)$, то $\sqrt{F_{two-sided}(1,d)} = |t_{one-sided}(d)|$.


№2. Определяем знак односторонней статистики Стьюдента:

```
. local sign_h4 = sign(_b[lnafr]+_b[lnpe_to_ta]+_b[lnonile_to_phys_act]-1)
```

№3. Вычисление вероятности того, что оценка линейного ограничения коэффициентов больше или меньше порога, задаваемого набором гипотез:

```
. display "Ho: coef <= 1 p-value = " ttail(r(df_r),`sign_h4'*sqrt(r(F))) Ho: coef <= 1 p-value = 1  
. display "Ho: coef >= 1 p-value = " 1-ttail(r(df_r),`sign_h4'*sqrt(r(F))) Ho: coef >= 1 p-value = 0  
(6.2) H_0: H_{stat} > 0 VS H_{alt}: H_{stat} \le 0  
Аналогично приходим к выводу: . display "Ho: coef <= 0 p-value = " ttail(r(df_r),`sign_h'*sqrt(r(F))) Ho: coef <= 0 p-value = 0  
. display "Ho: coef >= 0 p-value = " 1-ttail(r(df_r),`sign_h'*sqrt(r(F))) Ho: coef >= 0 p-value = 1
```

7. Сопоставление time-invariant и time-varying H-stat: цикличность конкуренции

Источник: расчеты автора

8. Уравнение прибыльности активов (ROA): расчет E-stat Шаффера как критерий качества оценки H-stat

Оценка уравнения из п.2.3

Идея: (см. Приложение, п.2.) Если банковская система находится в равновесии, то это предполагает (в идеале) равномерное распределение риска и, соответственно, прибыльности между банками. Это означает, что изменение трех факторных цен – ключевые регрессоры в спецификации уравнения дохода Панзара-Роуза – не влияет на динамику прибыльности активов (ROA)

```
R-sq: within = 0.0154
                                        Obs per group: min =
     between = 0.0707
                                                    avg =
                                                            21.3
     overall = 0.0313
                                                    max =
                                                              24
                                        F(6,10579) = 
                                                            27.59
corr(u i, Xb) = -0.0033
                                                      = 0.0000
                                        Prob > F
  lroal101 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
lnafr | -.105737 .0172876 -6.12 0.000 -.1396239 -.07185
lnonile_to~t | .1480999 .029293 5.06 0.000 .0906802 .2055197
lnpe_to_ta | .0349798 .0254505 1.37 0.169 -.0149081 .0848676
-.253197 -.1038415
                                               .2053898
                                                          .3237723
                       .025865 -5.11 0.000 -.1829463 -.0815458
   __cons | -1.236667
                       .1312728 -9.42 0.000 -1.493986 -.9793472
______
             .5417489
    sigma_u |
    sigma e | .90930125
      rho | .26197131 (fraction of variance due to u_i)
F test that all u i=0: F(521, 10579) = 7.42
                                                 Prob > F = 0.0000
E_{stat} = -0.106 + 0.148 + 0.035 = 0.077 (6)
. test lnafr+lnonile to phys act+lnpe to ta=0
F(1, 10579) = 5.26, Prob > F = 0.0219
. test lnafr+lnonile to phys act=0
F(1, 10579) = 2.21, Prob > F = 0.1368
```

9. Оценка динамической версии уравнения дохода как альтернатива статической версии: применение метода Ареллано-Бонда оценки моделей с динамическими панельными данными.

9.1 Предыстория:

- до Goddard et al. (2006) оценка H-stat проводилась на основе статической версии уравнения дохода, из которого можно сделать вывод о конкуренции, но нельзя сделать вывод о «динамичности» банковской системы (находится она в равновесии или нет). Соответственно, нужно было расчеты H-stat подтверждать нулевыми E-stat.
- Goddard et al. (2006) впервые ввел в рассмотрение в теме моделирование конкуренции банковской системы на основе подхода Панзара-Роуза динамическую версию уравнения дохода. На ее основе одновременно вычисляются H-stat и делается вывод о равновесии / неравновесии банковской системы на основе использования метода Ареллано-Бонда.
- <u>9.2 Метод</u>: Линейные динамические модели на панельных данных (LDPD-models) включают в состав независимых переменных p лагов зависимой переменной и содержат ненаблюдаемые панельные эффекты, фиксированные или случайные. По построению, эти эффекты коррелируют с лагированной зависимой переменной, что приводит к несостоятельным оценкам коэффициентов.

Arellano, Bond (1991) получили состоятельный способ оценивания таких моделей на основе применения Обобщенного Метода Моментов (ОММ, GММ). В STATA включена соответствующая процедура — "Arellano-Bond dynamic panel-data estimation", что упрощает применение этого сложного метода. Недостатки метода проявляются, например, тогда, когда в остатках модели обнаруживаются высокие порядки авторегрессии.

9.3 Оценка динамического уравнения дохода.

$$\Delta \ln II_{i,t} = \alpha_i + \theta \cdot \Delta \ln II_{i,t-1} + \beta \cdot \Delta FIP_{i,t} + \gamma \cdot \Delta EXOG_{i,t} + \delta \cdot \Delta \ln TA_{i,t} + \Delta \varepsilon_{i,t}$$
 (7)

. xtabond dlniii dlnafr dlnonile_to_phys_act dlnpe_to_ta dlnoi_to_ii dlneq_to_ta dlnlns_to_ta dlnonea_to_ta dlnera_to_erp dlndps_to_f dlnta, lags(1) maxldep(1) maxlags(1) twostep vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs 10439 Number of groups 518 Group variable: regn id Time variable: quart Obs per group: min =avg = 20.15251max = Wald chi2(11) = 126.84 = 0.0000 Number of instruments = 32 Prob > chi2 Two-step results

dlniii	 Coef.	WC-Robust Std. Err.	z	P> z	[95% Conf	. Interval]
dlniii						
L1.	0641537	.034965	-1.83	0.083	1326934	.0043782
dlnafr	.0380487	.011491	3.31	0.001	.0155268	.0605707
dlnonile_t~t	.3068993	.0451241	6.80	0.000	.2184577	.3953408
dlnpe to ta	.2045604	.0399053	5.13	0.000	.1263474	.2827734
dlnoi_to_ii	433726	.056345	-7.70	0.000	5441602	3232918
dlneq to ta	.0146803	.0101599	1.44	0.148	0052326	.0345933
dlnlns_to_ta	.0605805	.0171804	3.53	0.000	.0269074	.0942535
dlnonea_to~a	0382345	.0093535	-4.09	0.000	0565672	0199019
dlnera_to_~p	.0108261	.0067607	1.60	0.109	0024246	.0240768
dlndps to f	.0131191	.0046829	2.80	0.005	.0039407	.0222975
dlnta	.5246105	.0616901	8.50	0.000	.4037	.6455209
_cons	.0315954	.0049669	6.36	0.000	.0218605	.0413303

Instruments for differenced equation

GMM-type: L(2/2).dlniii

Standard: D.dlnafr D.dlnonile_to_phys_act D.dlnpe_to_ta D.dlnoi_to_ii D.dlneq_to_ta D.dlnlns_to_ta D.dlnonea_to_ta D.dlnera_to_erp

D.dlndps to f D.dlnta

Instruments for level equation

Standard: cons

Вывод: 95% доверительный интервал оценки $\hat{\theta}_{GMM}$ при лагированной зависимой переменной включает ноль: $-0.13 \le \hat{\theta}_{GMM} \le 0.004$. Значит, темп прироста процентных расходов, наблюдавшийся в предыдущем квартале, не влияет (или слабо влияет) на текущий темп прироста процентных расходов: шоки предыдущих периодов не переносятся (практически не переносятся) на последующие периоды. Такая ситуация — в соответствии с подходом Ареллано-Бонда —

называется равновесной. Следовательно, можно считать обоснованным расчет H-stat как на основе динамической, так и на основе статической версий уравнения дохода.

9.4 Анализ динамического уравнения дохода: тестирование авторегрессии в остатках и тестирование сверхидентифицируемых ограничений (regression postestimation).

9.4.1 Тестирование авторегрессии в остатках

. estat abond, artests(4)

Arellano-Bond test for zero autocorrelation in first-differenced errors

HO: no autocorrelation

Вывод: в остатках обнаружена авторегрессия второго порядка AR(2)

9.4.2 Учет AR(2) в динамической версии уравнения дохода

```
. xtabond dlniii dlnafr dlnonile_to_phys_act dlnpe_to_ta dlnoi_to_ii dlneq_to_ta dlnlns_to_ta dlnonea_to_ta dlnera_to_erp dlndps_to_f dlnta, lags(1) maxldep(1) maxlags(1) twostep artests(2) vce(robust)
```

```
Arellano-Bond dynamic panel-data estimation Number of obs = 10439
Group variable: regn_id Number of groups = 518
Time variable: quart

Obs per group: min = 1
avg = 20.15251
max = 21

Number of instruments = 32

Wald chi2(11) = 126.84
Prob > chi2 = 0.0000
```

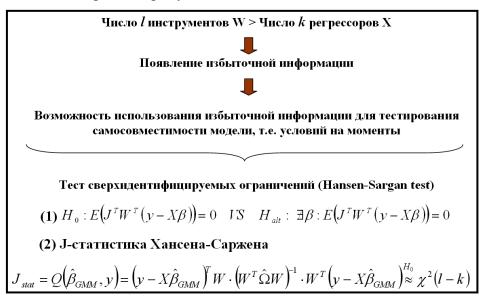
Two-step results

 dlniii	Coef.	WC-Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
dlniii						
L1.	0641537	.034965	-1.83	0.083	1326934	.0043782
dlnafr	.0380487	.011491	3.31	0.001	.0155268	.0605707
dlnonile t~t	.3068993	.0451241	6.80	0.000	.2184577	.3953408
dlnpe to ta	.2045604	.0399053	5.13	0.000	.1263474	.2827734
dlnoi to ii	433726	.056345	-7.70	0.000	5441602	3232918
dlneq to ta	.0146803	.0101599	1.44	0.148	0052326	.0345933
dlnlns to ta	.0605805	.0171804	3.53	0.000	.0269074	.0942535
dlnonea to~a	0382345	.0093535	-4.09	0.000	0565672	0199019
dlnera to ~p	.0108261	.0067607	1.60	0.109	0024246	.0240768
dlndps to f	.0131191	.0046829	2.80	0.005	.0039407	.0222975
dlnta	.5246105	.0616901	8.50	0.000	.4037	.6455209
_cons	.0315954	.0049669	6.36	0.000	.0218605	.0413303

Instruments for differenced equation

GMM-type: L(2/2).dlniii

Standard: D.dlnafr D.dlnonile_to_phys_act D.dlnpe_to_ta D.dlnoi_to_ii D.dlneq to ta D.dlnlns to ta


D.dlnonea_to_ta D.dlnera_to_erp D.dlndps_to_f D.dlnta

Instruments for level equation

Standard: _cons

Примечание №1. GMM является обобщением метода инструментальных переменных IV. Оценки коэффициентов выводятся из условий, налагаемых на моменты. В нашем случае:

- матрица регрессоров X_{j} формируется из k (k=12) регрессоров
- матрица инструментов $W_{m \times l}$ формируется из l (l=32) переменных, инструментирующих k регрессоров.
- поскольку l=32 > k=12, возникает проблема сверхидентифицируемых ограничений: каждый регрессор может быть инструментирован более одного раза и, следовательно, возникает неединственность оценки вектора коэффициентов модели.
- решение возникшей проблемы возможно, в частности, с помощью выбора приоритетных инструментов и, соответственно, снижения размерности матрицы W до размерности матрицы X. Таким образом, в нашем случае приоритетных инструментов должно быть 12, и мы можем использовать матрицу весов J и перейти к новому набору инструментов: $W \cdot J = WJ$ такой набор состоит из 12 инструментов
- моментные условия задаются в виде: $J^T W^T (y X\beta) = 0$ (k уравнений и k неизвестных)
- на практике сложно определить «приоритетные» инструменты. В итоге мы остаемся с моментными условиями $W^T(y-X\beta)=0$ (1 уравнений > k неизвестных). Вновь возникает проблема сверхидентифицируемых ограничений.
- В STATA вшит тест Саржена (Sargan test) на идентификацию того, эффективно ли при оценке уравнения были использованы все 1 инструментов, а именно: смогла ли STATA автоматически подобрать матрицу J.

Примечание №2. STATA не сможет провести тест Саржена, если – при оценке уравнения – была поставлена опция *vce(robust)*, означающая, что стандартные ошибки оценки коэффициентов оценены эффективно («робастно»). Поэтому, прежде чем проводить тест, придется переоценить уравнение без этой опции. После чего вызывается команда:

```
Sargan test of overidentifying restrictions
    H0: overidentifying restrictions are valid
    chi2(20) = 103.3552
    Prob > chi2 = 0.0000
```

Вывод: к сожалению, нулевая гипотеза об эффективном использовании всей полноты матрицы инструментальных переменных отвергнута. Следовательно – хотя оценки коэффициентов значимы и удовлетворяют экономическим соображениям – они неединственны. Необходимо искать более удачный способ использования инструментальных переменных.

10. Финальные этапы эмпирической части диссертации

Планируется:

<u>1 ЭТАП.</u> Решение проблемы сверхидентифицируемых ограничений в динамической версии уравнения дохода.

 $\underline{\mathbf{2}\ \mathbf{TA\Pi}}$. Моделирование динамики H-stat на панельных данных (факторы: а) показатели экспансии иностранных банков на российский банковский рынок, б) индексы концентрации HHI и $(\mathbf{CR})^1$

3 ЭТАП. Расчет Z-stat по (16)

<u>4 ЭТАП.</u> Моделирование взаимосвязи Z-stat, H-stat и динамики реального ВВП (на поквартальных данных) с применением методов эконометрики временных рядов (поскольку исследуем банковский сектор одной страны (России), то не можем проводить этот этап с применением методов эконометрики панельных данных)²

Литература:

- 1. Amable B., Chatelain J. B., De Bandt O. «Optimal capacity in the banking sector and economic growth» // Journal of banking and finance, № 26, 2002
- 2. Arellano M., Bond S. «Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations» // Review of Economic Studies 58, 277-297. 1991
- 3. Berger A.N., Klapper L.F., Turk-Ariss R. «Bank Competition and Financial Stability». The World Bank, Development Research Group, Finance and Private Sector Team, Policy Research Working Paper 4696, August 2008.
- 4. Bikker J.A., Haaf K. «Competition, concentration and their relationship: An empirical analysis of the banking industry » //
 Journal of banking and finance, № 26, 2002
- 5. Bikker J.A., Spierdijk L., Finnie P. «Misspecification of the Panzar-Rosse Model: Assessing Competition in the Banking Industry». De Nederlandsche Bank, Working Paper No. 114, September 2006
- Bikker J.A., Shaffer S., Spierdijk L. «Assesing Competition With The Panzar- Rosse Model: The Role of Scale, Costs, and Equilibrium». The Australian National University, Centre For Applied Macroeconomic Analysis, CAMA Working Paper No. 27, October 2009
- 7. Bresnahan T. «The Oligopoly Solution Concept is Identified». Economics Letters 10, 87-92. 1982

$$Z_{i,t} = z_i + a \cdot H_{i,t} + b_1 \cdot \Delta \ln(GDP_{i,t}) + b_2 \cdot s_{ER_{i,t}} + c \cdot DFOR - 3_{i,t} + d \cdot LASSETES - AVG_{i,t} + \varphi_{i,t}$$

¹ например, в Levy Yeyati, Micco (2007) оценивается уравнение $H_{i,t} = h_i + \zeta_1 \ln(N_{fori.t}) + \zeta_2 FASSETS_{i,t} + \omega_j CR_{j,i,t} + I_{\{CR_i=0\}} v \cdot HHI_{i,t} + \mu_{i,t}$

² например, в Levy Yeyati, Міссо (2007) оценивается уравнение по панели из 8 стран

- Buchs T., Mathisen J. «Competition and Efficiency in Banking: Behavioral Evidence from Ghana». IMF Working Paper 05/17, 2005
- Carbo, Molyneux. «Cross-Country Comparisons of Competition and Pricing Power in European Banking». Munich Personal RePEc Archive, Paper No. 15258, 2006
- Clarke G., Cull R., et al. «The Effect of Foreign Entry on Argentina's Domestic Banking Sector». Policy Research Working Paper, № 2158, 1999
- 11. Claessens S., Laeven L. «Financial dependence, banking sector competition, and economic growth» // Journal of the European Economic Association, № 1, 2005
- 12. Coccorese P. «Banking competition and macroeconomic conditions: a disaggregate analysis» // Journal of international financial markets, institutions & money, № 14, 2004
- 13. Coccorese P. «An investigation on the causal relationships between banking concentration and economic growth». International Review of Financial Analysis, № 17, 2007
- 14. Coccorese P. «Market Power in Local Banking Monopolies» // Journal of Banking & Finance, №33, 2009
- 15. Cull R., Senbet L. W., Sorge M. «The effect of deposit insurance on financial depth: A cross-country analysis» // The Quarterly Review of Economics and Finance, № 42, 2002
- 16. De Bandt O., Philip Davis E. «Competition, contestability and market structure in European banking sectors on the eve of EMU» // Journal of banking and finance, № 24, 2000
- 17. De Haas R, Van Lelyveld I. «Foreign banks and credit stability in Central and Eastern Europe. A panel data analysis» //
 Journal of banking and finance, № 30, 2006
- 18. De Nicolo G. «Size, Charter Value and Risk in Banking: An International Perspective». International Finance Discussion Paper 689, Board of Governors of the Federal Reserve System. 2000
- 19. De Nicolo G., Honohan P., Ize A. «Dollarization of Bank Deposits: Causes and Consequences» // Journal of Banking and Finance 29 (7), 1697–1727. 2005
- 20. De Nicolo G., Bartholomew P., Zaman J., Zephirin M. «Bank consolidation, Internatiolization, and Conglomeration: Trends and Implications for Financial Risk». IMF Working Paper 03/158, 2003
- Delis, Manthos. «Competitive conditions in the Central and Eastern European banking systems». Munich Personal RePEc Archive, Paper No. 13890, 2008
- 22. Demirguc-Kunt A., Detragiache E. «Does deposit insurance increase banking system stability? An empirical investigation » // Journal of monetary economics, № 49, 2002
- 23. Demirguc-Kunt A., Thorsten B., Levine R. « Bank Concentration and Crises». World Bank, 2003
- 24. Dopico L. G., Wilcox J. A. «Openness, profit opportunities and foreign banking» // Journal of international financial markets, institutions & money, № 1, 2001
- 25. Gelos Gaston R., Roldos J. «Conditional and Market Structure in Emerging Market Banking Systems». Emerging Markets Review 5 (1), 39–59. 2004
- 26. Gischer H., Stiele M. «Testing for Banking Competition in Germany: Evidence from Savings Banks». Faculty of Economics and Management, Magdeburg, Germany, 2003
- 27. Goddard J., Wilson J.O.S. «Measuring Competition in Banking: A Disequilibrium Approach». Bangor Business School, University of Wales, November 2006
- 28. Lerner, A.P. «The concept of monopoly and the measurement of monopoly power» // Review of Economic Studies 1, 157175. 1934
- 29. Mason, E. «Price and production policies of large-scale enterprise» // American Economic Review, 29, 61-74. 1939
- 30. Lau L.J. «On Identifying the Degree of Competitiveness from Industry Price and Output Data». Economics Letters 10, 93-99. 1982

- 31. Levine R. «Denying Foreign Bank Entry: Implications for Bank Interest Margins». Central Bank of Chile, Working Paper 222, 2003
- 32. Levy Yeyati E., Micco A. «Concentration and foreign penetration in Latin American banking sector: impact on competition and risk» // Journal of banking and finance, № 31, 2007
- 33. Mamatzakis E., Staikourasa C., Koutsomanoli-Fillipakia N. «Competition and concentration in the banking sector of the South Eastern European region» // Emerging markets review, № 6, 2005
- 34. Panzar J. C., Rosse J. N. «Testing for Monopoly Equilibrium» // The Journal of Industrial Economics, Vol. 35, No. 4, 1987
- 35. Rancière R., Loayza N. «Financial Development, Financial Fragility, And Growth». The World Bank, WPS3431, October 2004
- 36. Robert D., Kenneth K. «The Japanese banking crisis and economic growth: Theoretical and empirical implications of deposit guarantees and weak financial regulation» // Journal of the Japanese and international economies, № 17, 2003
- 37. Roy, A.D. «Safety first and the holding of assets» // Econometrica 20 (3), 431-449, 1952
- 38. Shaffer S. «A nonstructural test for competition in financial markets» // Federal Reserve Bank of Chicago, Proceedings of a Conference on Bank Structure and Competition, 225-243. 1982
- 39. Shaffer S., DiSalvo J. «Conduct in a Banking Duopoly» // Journal of Banking and Finance 18, 1063-1082. 1994
- 40. Unite A., Sullivan M. «The Effect of Foreign Entry and Ownership Structure on the Philippine Domestic Banking Market»

 // Journal of banking and finance, № 27, 2002
- 41. Wong J., Wong E., Fong T. «Competition in Hong-Kong's Banking Sector: A Panzar-Rosse Assessment». Hong-Kong Monetary Authority, Research Memorandum 16, October 2006

Приложение

I. Суть метода H-статистик модели Панзара-Роуза

Вывод «уравнения дохода в редуцированной форме».

Пусть:

1. TR(y,n,z) — общий доход банка, y - вектор принятия решений о значении целевых переменных; n - число конкурирующих банков (в условиях монополии); z - вектор экзогенных переменных.

Для монополиста $TR(y,n,z) = \lambda \cdot z^{\alpha} \cdot y^{\frac{e-1}{e}}$, где e- эластичность спроса по цене, e>1.

Для конкурирующего банка $TR(y,n,z) = y \cdot P(y,n,z)$, $\partial P(y,n,z)/\partial y < 0$, $\partial P(y,n,z)/\partial n < 0$

2. TC(y, w, t) - общие издержки банка, w - вектор факторных цен для банка; t - вектор экзогенных переменных.

Тогда $\pi(y,z,w,t) = TR(y,n,z) - TC(y,w,t)$ - прибыль банка.

3.
$$y^0$$
- решение $\pi(y, z, w, t) \to \max_{\{y\}}$, где $y^0 = y^0(w, n, z, t)$

Тогда «уравнение дохода в редуцированной форме» есть $TR^0 = TR^*(w, n, z, t)$

Teopema PR1. Сумма эластичностей факторных цен для монополиста является отрицательной величиной.

$$H_{mon} = \sum_{i=1}^{k} \frac{w_i}{TR^*} \cdot \frac{\partial TR^*}{\partial w_i} \le 0,$$
(1)

где k - число факторных цен, причем «Индекс Лернера» рыночной власти монополиста есть

$$L = \frac{e-1}{e} = \frac{H_{mon}}{H_{mon} - 1} > 0$$

Teopema PR2. В условиях симметричного равновесия по Чемберлену сумма эластичностей факторных цен для типичной фирмы-конкурента лежит в интервале от нуля до единицы.

$$0 < H_{con} = \sum_{i=1}^{k} \frac{w_i}{TR^*} \cdot \frac{\partial TR^*}{\partial w_i} \le 1.$$
(2)

Вывод: рыночная власть измеряется той степенью, с которой изменение факторных цен ∂w_i отражается в изменении дохода в редуцированной форме ∂TR^* , полученного банком с номером i.

2. Суть метода Е-статистик модели Шаффера (Shaffer (1982))

B Shaffer (1982):

- а. доказано, что оценка H-stat, получаемая в (4) на основе оценки статической спецификации уравнения (3), является <u>несмещенной</u> оценкой уровня конкуренции в банковской системе тогда и только тогда, когда эта банковская система находится в долгосрочном равновесии в каждый момент времени, в который имеются и используются наблюдения.
- b. предложен тест на рыночное равновесие. Идея: если банки постоянно находятся в состоянии конкуренции, то эта конкуренция должна привести к устранению диспропорций в распределении риска между банками в равновесии. Значит, уровень прибыли банков (ROA) должен не тесно коррелировать с факторными ценами (FIP): Corr(ROA; FIP) ≈ 0.
 Следовательно, заменяем в (3) зависимую переменную на ROA и оцениваем

$$\ln(ROA_{i,t}) = \frac{1}{\delta_{i,1}^* - \alpha_{i,1}^*} \left[(\alpha_{i,0}^* - \delta_{i,0}^*) + \sum_{j=1}^k \beta_j^* \ln(FIP_{j,i,t}) + \sum_{j=1}^l \gamma_j^* \ln(EXOG_{COST_{j,i,t}}) - \sum_{j=1}^s \xi_j^* \ln(EXOG_{REVEN_{j,i,t}}) \right] + \varepsilon_{i,t}^* (\mathbf{1})$$

$$(5) \Rightarrow E - stat = \frac{\partial \ln(ROA_{i,t})}{\partial \ln(FIP_{j,i,t})} = \frac{\sum_{j=1}^{k} \beta_{i,j}^{*}}{\delta_{i,j}^{*} - \alpha_{i,j}^{*}} = \begin{cases} = 0 \Rightarrow p \text{ынок в равновесии} \\ \neq 0 \Rightarrow u \text{наче} \end{cases}$$
(2)

3. Возможность получения несмещенной оценки H-stat уровня конкуренции без проверки гипотезы о равновесии банковского рынка (без E-stat)

В Goddard et al. (2006) — наряду с оцениванием статической версии уравнения (3) с помощью «static FE-estimator³» — вводится <u>динамическая версия</u> уравнения (3) дохода в редуцированной форме, оцениваемая с помощью «dynamic GMM-estimator⁴».

_

³ Fixed-Effects – оценка модели с фиксированными эффектами

⁴ GMM – обобщенный метод моментов. Dynamic GMM-estimator введен в Arellano, Bond (1991)

Идея проста. Пусть имеют место шоковые изменения факторных цен (т.е. сильное отклонение от прежней траектории). При этом предположим, что приспособление общих (или процентных) доходов банка к новым факторным ценам (т.е. выход на новую траекторию) занимает более одного периода⁵. Тогда банк не находится в состоянии долгосрочного равновесия.

Очевидно, что оценка статического уравнения (3) даст смещенные оценки для H-stat, причем смещение произойдет в сторону нуля (т.е. монополии), что – скорее всего – не соответствует действительности.

Поэтому, прежде чем оценивать уравнение (3) в статике, нужно оценивать уравнение (3) в динамике:

$$\Delta \ln \left(OUT_{i,t}\right) = \sum_{j=1}^{k} \beta_{j}^{**} \cdot \Delta \ln \left(FIP_{j,i,t}\right) + \theta \cdot \Delta \ln \left(OUT_{i,t-1}\right) + \sum_{j=1}^{l} \gamma_{j}^{**} \cdot \Delta \ln \left(EXOG_{COST_{j,i,t}}\right) - \sum_{j=1}^{s} \xi_{j}^{**} \cdot \Delta \ln \left(EXOG_{REV_{j,i,t}}\right) + \Delta \varepsilon_{i,t}^{**} (7)$$

Тогда, если доверительный интервал, построенный для $\hat{\theta}_{GMM}$ на заданном уровне значимости, не включает значение ноль, то делается вывод о неравновесном состоянии банка. Тогда несмещенной оценкой уровня конкуренции, характерного для такого банка, может являться

только
$$H_{stat}^{GMM} = \frac{\sum_{j=1}^{k} \beta_{j}^{**}}{1-\theta}$$
 (8).

Pacчет H-stat в Goddard et al. (2006)

Если же доверительный интервал включает ноль, то можно использовать значения H-stat, оцененные как с помощью FE, так и с помощью GMM. При этом необязательно выполнять расчет E-stat.

4. Альтернативные оценки H-stat в ключевой работе: Goddard et al. (2006)

		FE esti	mation					GMM	estimatio	on		
	Nobs	N_{bank}	\hat{H}^F	s.e.	Nobs	N _{bank}	\hat{H}^G	s.e.	$\hat{\delta}_2^G$	s.e.	Sargan	AR(2)
Group A												
Australia	139	36	.186	.071	102	32	.549	.050	.273	.037	.443	.266
Austria	748	183	.465	.039	616	156	.810	.095	.261	.056	.735	.08
Belgium	251	62	.586	.044	217	55	.762	.041	.108	.031	.327	.66.
Denmark	397	96	.058	.031	351	91	.130	.058	088	.069	.074	.939
Germany	7740	1950	.431	.010	7099	1797	.532	.030	.139	.037	.000	.23:
Italy	3224	763	.413	.015	2819	695	.583	.071	.148	.051	.024	.48
Japan	2804	714	.232	.016	2383	649	.222	.044	067	.066	.031	.86.
Norway	260	66	.348	.052	202	54	.294	.039	141	.067	.964	.48.
Spain	413	99	.571	.051	357	91	.793	.072	.194	.056	.176	.52
Sweden	430	111	.126	.026	244	107	.135	.019	055	.062	.115	.23
Switzerland	1402	386	.578	.031	956	326	.694	.056	.079	.037	.001	.00
UK	394	112	.435	.042	287	77	.554	.089	030	.048	.138	.88
US	2394	586	.397	.016	2300	563	.672	.046	.137	.044	.267	.71
Group B												
Argentina	276	81	.605	.091	215	70	.911	.094	.011	.056	.057	.240
BanglaDesh	148	33	.987	.081	125	30	.955	.035	001	.016	.269	.338
Brazil	467	128	.606	.047	386	111	.998	.084	.147	.054	.240	.630
Chile	123	33	.900	.244	110	28	.397	.116	446	.020	.209	.27
Columbia	135	29	.874	.083	118	29	.934	.055	.032	.045	.396	.154
Croatia	148	36	.418	.087	116	32	.394	.071	.142	.079	.417	.37
India	310	73	.616	.035	291	67	.834	.059	.188	.056	.258	.53
Malaysia	133	32	.687	.084	112	27	.814	.039	.033	.021	.563	.198
Nigeria	186	58	.595	.061	126	41	.632	.049	.013	.049	.296	.653
Poland	150	44	.909	.107	100	36	.745	.095	157	.046	.277	.04

Pacчет E-stat в Goddard et al. (2006)

		FE est	imation					GMM	estimatio	on		
	Nobs	N_{bank}	\hat{E}^F	s.e.	Nobs	N_{bank}	\hat{E}^{G}	s.e.	$\hat{\gamma}_2^G$	s.e.	Sargan	AR(2
Group A												
Australia	139	36	.011	.003	102	32	.005	.001	.048	.046	.405	.370
Austria	748	183	010	.003	616	156	012	.003	.346	.064	.455	.26
Belgium	251	62	.001	.005	217	55	008	.002	.104	.040	.215	.37
Denmark	397	96	026	.004	351	91	.001	.002	.369	.029	.120	.22
Germany	7740	1950	009	.001	7099	1797	007	.001	.138	.041	.034	.28
Italy	3224	763	015	.002	2819	695	008	.004	.299	.008	.009	.41
Japan	2804	714	011	.002	2383	649	012	.002	008	.021	.054	.19
Norway	260	66	015	.004	202	54	.003	.003	.123	.092	.369	.49
Spain	413	99	081	.013	357	91	018	.002	007	.007	.005	.99
Sweden	430	111	004	.002	244	107	.000	.001	055	.024	.823	.24
Switzerland	1402	386	012	.003	956	326	012	.003	.338	.046	.033	.09
UK	394	112	018	.005	287	77	016	.002	.239	.024	.113	.76
US	2394	586	001	.001	2300	563	004	.002	.348	.066	.627	.77
Group B												
Argentina	276	81	055	.026	215	70	015	.018	297	.111	.441	.05
BanglaDesh	148	33	002	.006	125	30	008	.004	.531	.049	.396	.67
Brazil	467	128	017	.008	386	111	.013	.010	.008	.005	.512	.26
Chile	123	33	004	.016	110	28	.009	.006	.179	.061	.094	.20
Columbia	135	29	030	.010	118	29	159	.012	373	.024	.368	.26
Croatia	148	36	025	.012	116	32	040	.004	057	.018	.111	.10
India	310	73	014	.005	291	67	012	.003	110	.019	.005	.32
Malaysia	133	32	.002	.007	112	27	002	.002	.233	.016	.741	.36
Nigeria	186	58	038	.010	126	41	042	.009	.064	.080	.180	.31
Poland	150	44	.003	.008	109	36	010	.005	.225	.028	.467	.13
Russia	402	160	.003	.006	155	73	011	.005	.035	.034	.104	.44
Venezuela	203	58	016	.010	151	43	012	.008	.371	.063	.127	.16

Фрагмент таблицы результата расчета H-stat в Bikker et al. (2006)

⁵ по сути, это означает, что у такого банка низкие эластичности дохода по факторным ценам