Фетисов Роман 4 курс.

Моделирование взаимосвязи между мировыми ценами на энергоносители и макроэкономическими показателями России.

1. Цели и задачи.

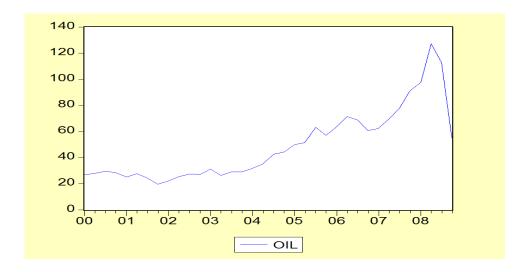
Цель:

Определить, существует ли математическое обоснование для того, чтобы безапелляционно называть РФ сырьевым государством? Или иными словами выявить степень взаимосвязи между мировыми ценами на энергоносители и макроэкономическими показателями РФ?

Задачи:

- 1. Протестировать взаимосвязь между ценой на нефть на мировом рынке и ВВП Российской Федерации.
- 2. Протестировать взаимосвязь между ценой на нефть на мировом рынке и номинальным курсом Российского рубля относительно доллара США.
- 3. Протестировать взаимосвязь между ценой на нефть на мировом рынке и ИПЦ Российской Федерации.
- 4. Экономически проинтерпретировать полученные результаты.
- 5. Сформулировать основные выводы.

2. Обзор работ на данную тему.


Теория	Авторы	Описание
«Революция цен» (Испания и другие страны Европы XVI-XVII вв)	Hamilton E.J 1934 Flynn DO 1982 John Munro 2003	Освоение месторождений золота и серебра, введение технологий, позволяющих разрабатывать их эффективно, по стандартам того времени, - все это привело к беспрецедентному в истории росту поступления драгоценных металлов в Европу. Рост предложения золота и серебра в условиях еще медленно растущей европейской экономики приводит к резкому - по стандартам общества, привыкшего к стабильности цен, - удорожанию товаров. В Испании, куда в первую очередь поступают драгоценные металлы, цены растут быстрее, чем в остальных европейских странах.
Гипотеза «Пребиша – Зингера»	Singer, 1950 Prebish, 1950	Указали на наличие определенной тенденции к снижению относительных цен на сырье по сравнению с продукцией обрабатывающей промышленности, а также сделали предположение о том, что доля сырьевых производств в ВВП будет снижаться ввиду технического прогресса.
«Ловушка сырьевой специализации» (staple trap theory)	Innis 1954; Baldwin 1956; Hirshman 1977	Согласно теории развития, опирающегося на главные экспортные продукты (staple theory of economic development), предложенной Иннисом, экономики богатых ресурсами стран, в частности экономика Канады, формировались и интегрировались вокруг главных экспортных сырьевых отраслей. Развитие же экономик в большой степени определялось сменой одних экспортных продуктов другими (в Канаде в хронологическом порядке — пушнина, зерно, древесина, минералы и топливо). Исторические исследования развития многих стран, богатых ресурсами, показывают, однако, что теория ловушек сырьевой специализации, хотя и полезна, но не достаточна, поскольку не учитывает макроэкономические и политэкономические и политэкономические факторы, ответственные за негативное воздействие ресурсного богатства на эк.рост

Модель с эффектом перехлеста (overshooting model)	Rodriguez, Sachs, 1999	Предположили, что страны, богатые ресурсами, имеют более высокий, а не более низкий уровень подушевого ВВП по сравнению с другими странами. Они ввели в модель Рамсея фактор производства, предположив, что он растет медленнее, чем капитал и труд. Оказалось, что в этом случае имеет место эффект перехлеста: сначала экономика превосходит стационарный уровень подушевого дохода, а затем возвращается к нему, демонстрируя отрицательные темпы роста. Авторы показывают, что отрицательные темпы экономического роста в Венесуэле в 1972—1993 гг. могут быть объяснены такой теорией. Недостаток модели с эффектом перехлеста состоит, конечно, в том, что она не объясняет, почему сам равновесный уровень дохода в развивающихся странах не подтягивается к уровню западных стран.
---	---------------------------	--

Описание переменных.

В качестве объясняющей (независимой) переменной для данной модели предлагается номинальная цена на нефть марки BREND в долларах США за баррель.

Базой для сбора статистики послужили данные по рыночным котировкам с лондонской товарной биржи на закрытия торгов 1ых чисел каждого месяца, начиная с 1.01.2000 и заканчивая 1.01.2009 годами, в случаях, когда 1ые числа являлись выходными или праздничными днями, мы использовали котировки на закрытия предшествующих празднику торговых дней. Далее из ежемесячных данных были получены среднеквартальные путем вычисления обыкновенных средних. В результате, был сформирован временной ряд из среднеквартальных цен на нефть за период с 1 квартала 2000 года по четвертый квартал 2008 года. Графическое представление полученного ряда представлено на нижестоящем графике:

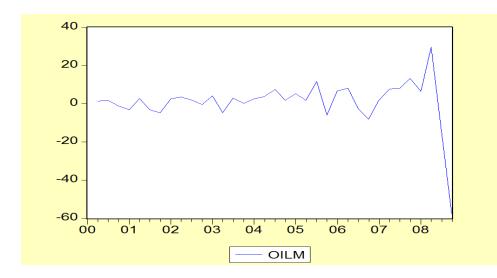
Для проверки данного ряда на стационарность используется тест Дики-Фуллера (ADF-тест) на наличие единичного корня, основанный на модели:

$$OILt = \beta 1 + \beta 2 OILt - 1 + \gamma T + \epsilon t$$

Мы проверяем нулевую гипотезу о не стационарности H_o : $\beta 2=0$ Как показал анализ при условии включения в тестовую модель тренда, коэффициент при переменной ОІL является отрицательным (-0.591843), а значение тестовой статистики (-3.787986) по модулю превышает критическое на уровне значимости в 5%. Следовательно, мы можем отклонить нулевую гипотезу о не стационарности. И использовать данный ряд для построения регрессии.

ADF Test Statistic	-3.787986	1% Critical Value*	-4.2505
		5% Critical Value	-3.5468
		10% Critical Value	-3.2056

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.


Augmented Dickey-Fuller Test Equation

Dependent Variable: D(OIL) Method: Least Squares Date: 04/22/09 Time: 20:34 Sample(adjusted): 2000:3 2008:4

Included observations: 34 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
OIL(-1)	-0.591843	0.156242	-3.787986	0.0007
D(OIL(-1))	0.850917	0.274068	3.104773	0.0041
С	5.647381	3.915083	1.442468	0.1595
@TREND(2000:1)	1.198518	0.416824	2.875354	0.0074
R-squared	0.381698	Mean dependent var		0.792941
Adjusted R-squared	0.319867	S.D. dependent var		12.71790
S.E. of regression	10.48847	Akaike info criterion		7.648561
Sum squared resid	3300.241	Schwarz crit	terion	7.828133
Log likelihood	-126.0255	F-statistic		6.173316
Durbin-Watson stat	1.698317_	Prob(F-statis	stic)	0.002141

Также покажем, что ряд первых разностей OILM является стационарным

ADF Test Statistic	-3.468798	1% Critical Value*	-3.6422
		5% Critical Value	-2.9527
		10% Critical Value	-2.6148

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(OILM)


Method: Least Squares Date: 04/22/09 Time: 21:16 Sample(adjusted): 2000:4 2008:4

Included observations: 33 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
OILM(-1)	-1.510081	0.435333	-3.468798	0.0016
D(OILM(-1))	0.832124	0.299977	2.773954	0.0094
C	2.469567	2.353075	1.049506	0.3023
R-squared	0.286436	Mean deper	ndent var	-1.803636
Adjusted R-squared	0.238865	S.D. depend	dent var	13.19839
S.E. of regression	11.51468	Akaike info	criterion	7.811630
Sum squared resid	3977.633	Schwarz cri	terion	7.947676
Log likelihood	-125.8919	F-statistic		6.021251
Durbin-Watson stat	1.836956	Prob(F-stati	stic)	0.006331

Н_о: о не стационарности отклоняется для разностей

Одной из зависимых переменных является переменная GDP, отражающая временной ряд квартальных показателей номинального ВВП России (пересчитанный в \$ США по среднеквартальному курсу) за период с 1 квартала 2000 года по 4 квартал 2008 года.

Для проверки данного ряда на стационарность используется тест Дики-Фуллера (ADF-тест) на наличие единичного корня, основанный на модели:

$$GDPt = \beta 1 + \beta 2 GDPt-1 + \gamma T + \epsilon t$$

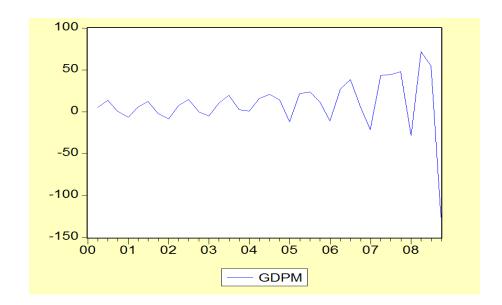
Мы проверяем нулевую гипотезу о не стационарности H₀: β2=0 Как показал анализ при условии включения в тестовую модель тренда, коэффициент при переменной является отрицательным (-0.278769), однако значение тестовой статистики (-1.918705) по модулю не превышает критическое даже на уровне значимости в 10%. Следовательно, мы не можем отклонить нулевую гипотезу о не стационарности.

ADF Test Statistic	-1.918705	1% Critical Value*	-4.2505
		5% Critical Value	-3.5468
		10% Critical Value	-3.2056

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(GDP) Method: Least Squares


Date: 04/22/09 Time: 20:52 Sample(adjusted): 2000:3 2008:4

Included observations: 34 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP(-1)	-0.278769	0.145290	-1.918705	0.0646
D(GDP(-1))	-0.167542	0.317609	-0.527511	0.6017
C	-2.203408	11.47936	-0.191945	0.8491
@TREND(2000:1)	3.469760	1.552050	2.235598	0.0330
R-squared	0.187610	Mean dependent var		8.913263
Adjusted R-squared	0.106371	S.D. dependent var		32.36907
S.E. of regression	30.59912	Akaike info	criterion	9.789951
Sum squared resid	28089.18	Schwarz cri	terion	9.969522
Log likelihood	-162.4292	F-statistic		2.309352
Durbin-Watson stat	_ 1.777657_	Prob(F-stati	stic)	0.096448

Для того чтобы использовать данный ряд в регрессионных моделях, необходимо привести его к стационарному виду, путем построения ряда из первых разностей значений исходного ряда: GDPM = GDPt – GDPt-1.

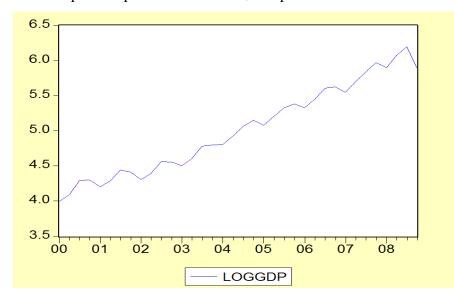
Графически данный ряд представлен на нижеследующем графике.

Как видно из нижестоящей таблицы H_0 о не стационарности отклоняется на любом уровне значимости. Следовательно, данный ряд может быть использован для построения регрессионных моделей.

ADF Test Statistic	-4.853068	1% Critical Value*	-2.6344
		5% Critical Value	-1.9514
		10% Critical Value	-1.6211

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation


Dependent Variable: D(GDP,2)

Method: Least Squares Date: 04/22/09 Time: 21:00 Sample(adjusted): 2000:4 2008:4

Included observations: 33 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(GDP(-1))	-1.412708	0.291096	-4.853068	0.0000
D(GDP(-1),2)	0.476848	0.252479	1.888665	0.0683
R-squared	0.450603	Mean dependent var		-4.241683
Adjusted R-squared	0.432880	S.D. dependent var		43.45271
S.E. of regression	32.72309	Akaike info criterion		9.872730
Sum squared resid	33194.81	Schwarz criterion		9.963428
Log likelihood	160.9001_	Durbin-Wats	son stat	1.407880

Также мы можем построить ряд из натуральных логарифмов ВВП и протестировать его на стационарность.

Как видно из нижестоящей таблицы H_{\circ} о не стационарности отклоняется на уровне значимости в 5% для ряда из логарифмов GDP при условии включения в модель тренда

ADF Test Statistic

-3.765802

1% Critical Value*

-4.2505

5% Critical Value

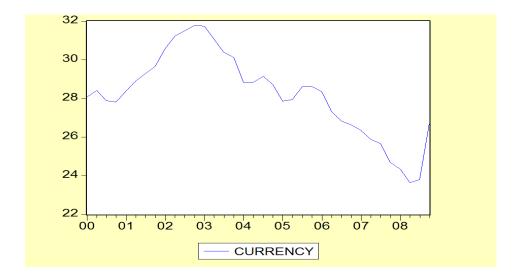
-3.5468

10% Critical Value

-3.2056

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LOGGDP)


Method: Least Squares Date: 04/27/09 Time: 21:50 Sample(adjusted): 2000:3 2008:4

Included observations: 34 after adjusting endpoints

		- 0 - 1		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOGGDP(-1)	-0.759936	0.201799	-3.765802	0.0007
D(LOGGDP(-1))	0.296513	0.212495	1.395391	0.1731
C	3.003980	0.780212	3.850211	0.0006
@TREND(2000:1)	0.045670	0.012359	3.695299	0.0009
R-squared	0.329592	Mean deper	ndent var	0.053063
Adjusted R-squared	0.262552	S.D. depend		0.111608
S.E. of regression	0.095843	Akaike info	criterion	-1.742083
Sum squared resid	0.275576	Schwarz crit	terion	-1.562511
	33.61541	F-statistic		4.916300
Durbin-Watson stat	1.486078	Prob(F-statis	stic)	0.006770
Adjusted R-squared S.E. of regression	0.262552 0.095843 0.275576 33.61541	S.D. depend Akaike info Schwarz crit	dent var criterion terion	0.11160 -1.74208 -1.56251 4.91630

Протестируем на стационарность ряд CURRENCY, состоящий из среднеквартальных значений номинального курса рубля относительно доллара США за период с 1 квартала 2000 года по 4 квартал 2008 года.

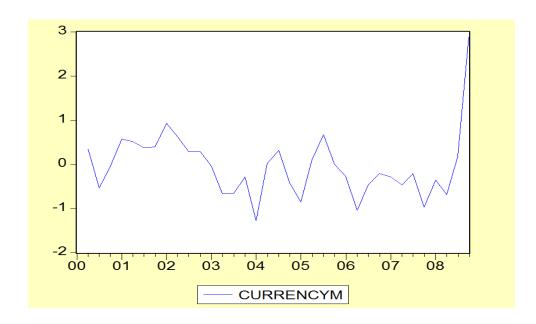
^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Статистика Дики-Фуллера не позволяет нам отклонить нулевую гипотезу о не стационарности.

ADF Test Statistic	-0.020672	1% Critical Value*	-2.6321
		5% Critical Value	-1.9510
		10% Critical Value	-1.6209

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CURRENCY)


Method: Least Squares Date: 04/22/09 Time: 21:24 Sample(adjusted): 2000:3 2008:4

Included observations: 34 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CURRENCY(-1)	-8.95E-05	0.004329	-0.020672	0.9836
D(CURRENCY(-1))	0.512308	0.224533	2.281658	0.0293
R-squared	0.141345	Mean deper	ndent var	-0.050588
Adjusted R-squared	0.114512	S.D. depend	dent var	0.744613
S.E. of regression	0.700684	Akaike info	criterion	2.183502
Sum squared resid	15.71064	Schwarz crit	terion	2.273287

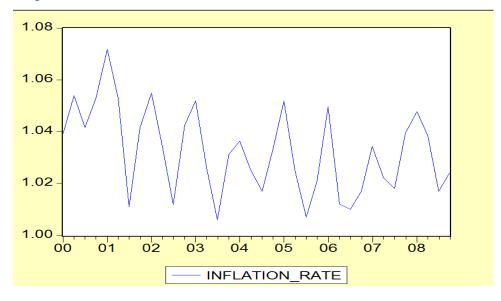
Log likelihood	-35.	11953	Durbin-Watson stat	1.296255

Построим ряд из первых разностей CURRENCYM. График, отображающий изменение значений этого ряда во времени изображен на следующем рисунке.

Гипотеза о не стационарности для данного ряда отклоняется на уровне значимости в 5%.

ADF Test Statistic	-2.434909	1% Critical Value*	-2.6344
		5% Critical Value	-1.9514
		10% Critical Value	-1.6211

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.


Augmented Dickey-Fuller Test Equation Dependent Variable: D(CURRENCYM)

Method: Least Squares Date: 04/22/09 Time: 21:28 Sample(adjusted): 2000:4 2008:4

Included observations: 33 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CURRENCYM(-1)	-0.613470	0.251948	-2.434909	0.0208
D(CURRENCYM(-1))	0.284863	0.243763	1.168608	0.2515
R-squared	0.143125	Mean dependent var		0.103939
Adjusted R-squared	0.115484	S.D. dependent var		0.728530
S.E. of regression	0.685173	Akaike info criterion 2		2.140402
Sum squared resid	14.55333	Schwarz criterion 2		2.231099
Log likelihood	-33.31663	Durbin-Wats	on stat	1.450140

Зависимая переменная INFLATION_RATE отражает квартальные темпы инфляции за период с 1 квартала 2000 года по 4 квартал 2008 года.

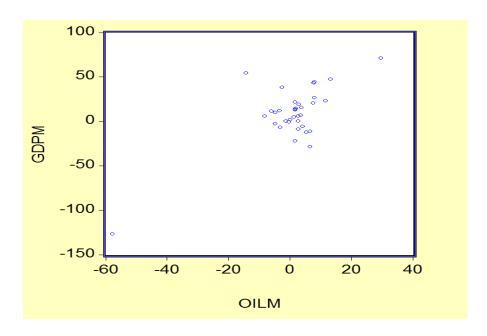
Гипотеза о не стационарности отклоняется на любом уровне значимости.

ADF Test Statistic	-5.330269	1% Critical Value*	-3.6353
		5% Critical Value	-2.9499
		10% Critical Value	-2.6133

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(INFLATION_RATE)

Method: Least Squares Date: 04/22/09 Time: 22:11 Sample(adjusted): 2000:3 2008:4


Included observations: 34 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
INFLATION_RATE(-	-1.032706	0.193744	-5.330269	0.0000
1)	0.444440	0.404.405	0.545004	0.0404
D(INFLATION_RATE(-1))	0.411148	0.161495	2.545891	0.0161
C	1.065761	0.200139	5.325100	0.0000
R-squared	0.484980	Mean deper	ndent var	-0.000873
Adjusted R-squared	0.451753	S.D. depend	dent var	0.020149
S.E. of regression	0.014919	Akaike info	criterion	-5.488246
Sum squared resid	0.006900	Schwarz crit	terion	-5.353567
Log likelihood	96.30019	F-statistic		14.59591
Durbin-Watson stat	1.566269	Prob(F-statis	stic)	0.000034

Модели парных регрессий.

Группа oilm_gdpm

Корреляционная диаграмма рассеивания.

Корреляционная матрица.

	OILM	GDPM
OILM	1	0.731366361604
GDPM	0.731366361604	1

Из диаграммы рассеивания и корреляционной матрицы можно сделать предположение о наличии существенной положительной связи между рядами OILM и GDPM.

Уравнение связи, подлежащее проверке МНК:

GDPM =
$$\beta$$
1C + β 2OILM(-1) + λ

В данном случае мы делаем предположение, что цены на нефть влияют на показатель ВВП с лагом в 1 квартал.

Dependent Variable: GDPM Method: Least Squares Date: 04/22/09 Time: 23:08 Sample(adjusted): 2000:3 2008:4

Included observations: 34 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2.084315	4.700969	0.443380	0.6605
OILM(-1)	2.699503	0.610116	4.424576	0.0001
R-squared	0.379567	Mean deper	ndent var	8.913263
Adjusted R-squared	0.360178	S.D. depend	dent var	32.36907
S.E. of regression	25.89165	Akaike info	criterion	9.402740
Sum squared resid	21452.08	Schwarz crit	terion	9.492526
Log likelihood	-157.8466	F-statistic		19.57687
Durbin-Watson stat	1.904666	Prob(F-stati	stic)	0.000105

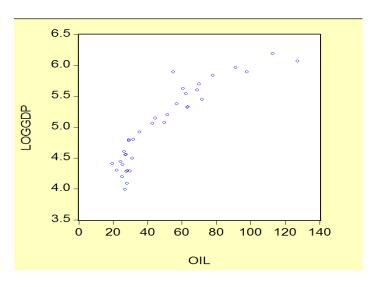
Как можно видеть из получившейся таблицы метод наименьших квадратов указывает на достаточно слабую степень связи между Ценой на нефть и ВВП с учетом лага в 1 квартал. На это указывает в первую очередь коэффициент детерминации (0.379567).

В связи с этим с целью улучшения модели преобразуем исходное уравнение регрессии, элиминировав лаговую составляющую: $GDPM = \beta 1C + \beta 2OILM + \lambda$

Dependent Variable: GDPM Method: Least Squares Date: 04/22/09 Time: 23:16 Sample(adjusted): 2000:2 2008:4

Included observations: 35 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	7.309930	3.740012	1.954521	0.0592
OILM	1.861751	0.302207	6.160519	0.0000
R-squared	0.534897	Mean depen	dent var	8.809969
Adjusted R-squared	0.520803	S.D. dependent var		31.89535
S.E. of regression	22.07926	Akaike info criterion		9.082600
Sum squared resid	16087.30	Schwarz crit	erion	9.171477
Log likelihood	-156.9455	F-statistic		37.95199
Durbin-Watson stat	2.358351	Prob(F-statis	stic)	0.000001


Интерпретация:

Из полученных данных можно сделать вывод о наличии положительной связи между ценами на нефть и ВВП России. Коэффициент детерминации (0.534897). F-statistic (37.95199) значительно превышает критический уровень на любом уровне значимости, следовательно, коэффициент детерминации получен корректно. Значение t-Statistic (6.160519) по модулю выше критического, следовательно, коэффициент при ОІLМ корректно отображает существующую зависимость. Таким образом, рост цены на нефть на 1\$ приводит к увеличению квартального ВВП на 1,86 млрд долларов.

Комментарий:

Не слишком высокое значение **R-squared** может объясняться как тем фактом, что цены на энергоносители являются далеко не единственным фактором, воздействующим на ВВП, так и тем фактом, что исходный ряд номинального ВВП не был подвержен сезонному сглаживанию. Регулярно ВВП падает в 1 квартале по сравнению с 4м кварталом предыдущего года, в то время как в котировках нефти такой динамики не наблюдается.

Группа oil_loggdp

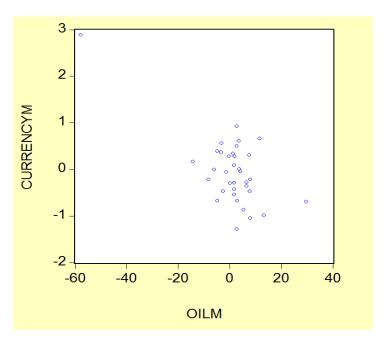
	OIL	LOGGDP
OIL	1	0.907587248919
LOGGDP	0.907587248919	1

Из диаграммы рассеивания и корреляционной матрицы можно сделать предположение о наличии существенной положительной связи между рядами OIL и LOGGDP.

$$LOGGDP = \beta 1C + \beta 2OIL + \lambda$$

Dependent Variable: LOGGDP

Method: Least Squares Date: 04/27/09 Time: 21:43 Sample: 2000:1 2008:4 Included observations: 36


Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.971060	0.094593	41.98030	0.0000
OIL	0.021399	0.001698	12.60433	0.0000
R-squared	0.823715	Mean depen	dent var	5.015963
Adjusted R-squared	0.818530	S.D. dependent var		0.641660
S.E. of regression	0.273343			0.297771
Sum squared resid	2.540351	Schwarz crit	erion	0.385745
Log likelihood	-3.359886	F-statistic		158.8691
Durbin-Watson stat	0.705073	Prob(F-statis	stic)	0.000000

Интерпретация:

Из полученных данных можно сделать вывод о наличии положительной связи между ценами на нефть и ВВП России, сглаженным по логорифму. Коэффициент детерминации (0.823715). F-statistic (158.8691) значительно превышает критический уровень на любом уровне значимости, следовательно коэффициент детерминации получен корректно. Значение t-Statistic (12.60433) по модулю выше критического, следовательно, коэффициент при ОІL корректно отображает существующую зависимость. Таким образом, рост цены на

нефть на 1\$ приводит к увеличению квартального логарифма ВВП на 0, 021 млрд. долларов.

Группа oilm_currencym

	OILM	CURRENCYM
OILM	1	-0.679298796963
CURRENCYM	-0.679298796963	1

Из диаграммы рассеивания и корреляционной матрицы можно сделать предположение о наличии существенной отрицательной связи между рядами OILM и CURRENCYM.

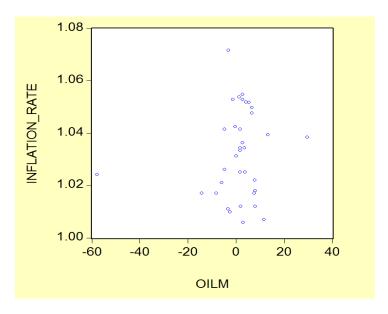
Уравнение связи, подлежащее проверке МНК:

 $CURRENCYM = \beta 1C + \beta 2OILM + \lambda$

В данном случае мы делаем предположение, что цены на нефть влияют на значение валютного курса без какого-либо временного лага.

Dependent Variable: CURRENCYM

Method: Least Squares Date: 04/22/09 Time: 23:42 Sample(adjusted): 2000:2 2008:4


Included observations: 35 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.007255	0.092936	-0.078063	0.9382
OILM	-0.039932	0.007510	-5.317451	0.0000
R-squared	0.461447	Mean dependent var		-0.039429
Adjusted R-squared	0.445127	S.D. dependent var		0.736546
S.E. of regression	0.548651	Akaike info criterion		1.692738
Sum squared resid	9.933607	Schwarz criterion		1.781615
Log likelihood	-27.62292	F-statistic		28.27529
Durbin-Watson stat	1.418711	Prob(F-statistic)		0.000007

Интерпретация:

Из полученных данных можно сделать вывод о наличии не значительной отрицательной зависимости между ценами на нефть и номинальным курсом российского рубля. Коэффициент детерминации (0.461447). F-statistic (28.27529) значительно превышает критический уровень на любом уровне значимости, следовательно, коэффициент детерминации получен корректно. Значение t-Statistic(-5.317451) по модулю выше критического, следовательно, коэффициент при OILM корректно отображает существующую зависимость. Таким образом, рост цены на нефть на 1\$ приводит к укреплению курса рубля на 4 копейки (-0.039932).

Группа oilm_inflation rate

	OILM	INFLATION_RATE	
OILM	1	0.109460125576	
INFLATION RATE	0.109460125576	1	

Из диаграммы рассеивания и корреляционной матрицы можно сделать предположение о наличии крайне слабой положительной связи между рядами OILM и INFLATION_RATE.

Уравнение связи, подлежащее проверке МНК:

INFLATION_RATE = $\beta 1C + \beta 2OILM + \lambda$

Dependent Variable: INFLATION_RATE

Method: Least Squares Date: 04/23/09 Time: 00:08 Sample(adjusted): 2000:2 2008:4

Included observations: 35 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.032234	0.002856	361.4272	0.0000
OILM	0.000146	0.000231	0.632602	0.5314

R-squared	0.011982	Mean dependent var	1.032351
Adjusted R-squared	-0.017958	S.D. dependent var	0.016711
S.E. of regression	0.016860	Akaike info criterion	-5.272248
Sum squared resid	0.009381	Schwarz criterion	-5.183371
Log likelihood	94.26435	F-statistic	0.400185
Durbin-Watson stat	_ 1.425751_	Prob(F-statistic)	_0.531353

Интерпретация:

Из полученных данных можно сделать вывод об отсутствии видимой связи между мировыми ценами на нефть и темпами российской инфляции. Коэффициент детерминации (0.011982) находится на уровне, который не позволяет говорить о наличии какойлибо связи.

Комментарий:

Таким образом, природа Российской инфляции лежит не в области притока нефте-долларов.

Список литературы:

- 1. Гайдар Е.Т. Гибель империи. Уроки для современной России. 2-е изд., испр. и доп. М.: «Российская политическая энциклопедия» (РОССПЭН), 2006. 448 с.
- 2. Полтерович, В.М. Экономическая политика, качество институтов и механизмы «ресурсного проклятия» [Текст] : докл. к *VIII Междунар*. науч. конф. «Модернизация экономики и общественное развитие», Москва, 3—5 апреля 2007 г. / В. Полтерович, В. Попов, А. Тонис ; Гос. ун/т Высшая школа экономики. М. : Изд.дом ГУ ВШЭ, 2007.
- 3. Cardenas M., Partow Z Oil, Coffee and Dynamic Commons Problem in Colombia. Inter-American Development Bank Office of the Chief Economist Research Network Document R-335. 1998
- 4. Corden M., Neary J.P. Booming Sector and Duich Disease Economics: A Survey // Economic Journal. 1982. December. Vol. 92. P. 826-844
- 5. Flynn DO. Fiscal crisis and the decline of Spain (Castile) // The Journal of Economic History. 1982. Vol. 42. P. 142.
- 6. W.A.Fuller Introduction to Statistical Time Series. 2nd ed., N.Y., Wiley, 1996
- 7. Hamilton E.J. American Treasure and the Price Revolution in Spain, 1501-1650. Cambridge: Harvard University Press, 1934. P. 34.
- 8. John Munro: The Monetary Origins of the 'Price Revolution':South Germany Silver Mining, Merchant Banking, and Venetian Commerce, 1470-1540, Toronto 2003
- 9. Rodriguez F., Sachs J.D. Why Do Resource Abundant Economies Grow More Slowly? A New Explanation and an Application to Venezuela// Journal of Economic Growth. 1999. Vol. 4. P. 277—303
- 10. Sachs J.D., Warner A.M. The Curse of Natural Resources // European Economic Review. 2001. Vol. 45.(Голландская болезнь).

- 11. *Sachs J.D.*, *Warner A.M.* Natural Resource Abundance and Economic Growth: NBER Working Paper. 1995.
- 12. *Stiglitz J.E.* The Resource Curse Revisited. Project Syndicate, 2004 (http://www.project/syndicate.org/commentaries/commentary_text.