Анна Пестова, Михаил Мамонов, Роман Левкин (бакалавриат, 4 курс)

Прогнозирование спроса на электроэнергию в России в среднесрочной перспективе (до 2010 года)

1. Цель работы: оценка среднесрочной эластичности спроса на электроэнергию и построение прогноза спроса на электроэнергию в России в среднесрочной перспективе.

2. Задачи:

- 1. Обзор существующих теоретических моделей и прогнозов спроса на электроэнергию в Россию
 - 2. Рассмотрение проблемы оценки спроса на электроэнергию в следующих разрезах:
 - по России в целом (на основе годовых и квартальных данных)
 - по отдельным группам потребителей (по промышленности в целом и по населению)
 - по регионам (пространственные выборки)
 - 3. Построение прогноза спроса на электроэнергию по России в целом до 2010 года (на основе годовых и квартальных данных)

3. Идейная постановка проблемы.

- 1) Период с 2001 до 2006 года: низкие темпы прироста спроса на электроэнергию, локальные кризисы. Независимые исследователи: необходимо скорректировать прогнозы спроса в большую сторону в связи с надвигающимся электроэнергетическим кризисом.
- 2) Конец 2006 года по настоящее время: резкий рост спроса в 2006 году на 3,8%. Пролонгация текущего шока на долгосрочную перспективу, необходимость развертывания инвестиционной программы по введению дополнительных энергомощностей. Независимые исследователи: поиск альтернативных прогнозов спроса, научное обоснование их для того, чтобы понять обоснованность расходования средств бюджета на инвестиционную программу.

Группа среднесрочного прогнозирования не утверждает, что ее прогноз единственно верный, но с учетом этого прогноза появляется возможность критического осмысления существующих прогнозов МинПромЭнерго и РАО «ЕЭС».

4. Основные гипотезы.

- 1) Прогнозы спроса на электроэнергию РАО ЕЭС и МинПромЭнерго до 2010 года основываются на экстраполяции краткосрочной тенденции (резкий рост электропотребления в 2006 году на 3,7%) на среднесрочную перспективу, поэтому оказываются существенно выше структурных эконометрических прогнозов
- 2) Спрос на электроэнергию по РФ в целом объясняется динамичным ростом экономики, то есть растущим валовым внутренним продуктом.
- 3) Регулируемые государством тарифы на электроэнергию оказываются заниженными, поэтому влияние цен на электричество на уровень потребления электроэнергии либо отсутствует, либо влияние на порядок ниже, чем в развитых странах (США).
- 4) На потребление электроэнергии значительное влияние должны оказывать среднемесячные температуры зимы и лета, что можно наблюдать на примере потребления электроэнергии в российских регионах с разными климатическими условиями.

5. Используемые методы.

5.1. Эконометрические модели спроса на электроэнергию, явно учитывающие накопленный запас оборудования (Модель Фишера-Кейзена).

 W_{it} – совокупная мощность оборудования і-ого домохозяйства в момент времени t, измеренная в киловатт-часах.

 q_{ii} – величина фактически потребленной электроэнергии, которая зависит от коэффициентов загрузки различных видов техники.

 u_{it} – коэффициенты загрузки.

$$q_{it} = u_{it} \cdot W_{it} = u_{it}(Y_{it}, P_{it}) \cdot W_{it}$$
 (1)

 Y_{it} - реальный доход на душу населения.

Прогнозирование спроса на электроэнергию в России в среднесрочной перспективе (до 2010 года)

 P_{it} - реальная цена электричества.

$$q_{it} = P_{it}^{\alpha} Y_{it}^{\beta} W_{it} \quad (2)$$

$$\ln q_{it} = \alpha \ln P_{it} + \beta \ln Y_{it} + \ln W_{it} \qquad (3)$$

$$\frac{W_{it}}{W_{it-1}} = e^{\gamma_i} \quad (4)$$

$$\ln W_{it} - \ln W_{it-1} = \gamma_i$$

$$\ln q_{i,t} - \ln q_{i,t-1} = \gamma_i + \alpha_i (\ln P_{i,t} - \ln P_{i,t-1}) + \beta_i (\ln Y_{i,t} - \ln Y_{i,t-1}), \quad (5)$$

оценки $\hat{\alpha}_i$ и $\hat{\beta}_i$ – это оценки краткосрочных эластичностей спроса по цене и доходу.

5.2. Эконометрические модели спроса на электроэнергию, косвенно учитывающие запасы оборудования.

 y_t – фактическое потребление электричества в период t.

 y_{t}^{*} – долгосрочное желаемое или равновесное потребление электричества.

$$\ln y_t^* = \alpha + \beta_1 \ln x_{1t} + \beta_2 \ln x_{2t} + \dots + \beta_k \ln x_{kt} + \varepsilon_t, (6)$$

где $x_{1t},...,x_{kt}$ – факторы спроса (например, уровень дохода, цены), определяющие долгосрочное желаемое потребление электроэнергии

 ε_t — независимые и одинаково нормально распределенные случайные возмущения с нулевым средним и дисперсией σ^2 .

Выдвигается гипотеза частичной корректировки, согласно которой:

$$\ln y_{t} - \ln y_{t-1} = \varphi(\ln y_{t}^{*} - \ln y_{t-1}) + \eta_{t}, \quad (7)$$

где η_t – случайное возмущение,

 $0 < \varphi \le 1$ - коэффициент корректировки.

$$\ln y_{t}^{*} = \frac{1}{\varphi} \ln y_{t} + \frac{\varphi - 1}{\varphi} \ln y_{t-1} - \frac{1}{\varphi} \eta_{t}.$$
 (8)

Правая часть уравнения (6) подставляют в уравнение (8) и получившееся уравнение переписывается в виде следующей спецификации:

$$\ln y_{t} = \alpha \varphi + (1 - \varphi) \ln y_{t-1} + \beta_{1} \varphi \ln x_{1t} + \beta_{2} \varphi \ln x_{2t} + \dots + \beta_{k} \varphi \ln x_{kt} + v_{t},$$

где $V_t \equiv \varphi \mathcal{E}_t + \eta_t$ – составное возмущение.

Если v_i – независимы и одинаково нормально распределены, то применение метода обычного МНК дает состоятельные оценки.

$$\frac{\partial \ln y_{it}}{\partial \ln x_{it}} = \beta_i \varphi$$
 - краткосрочная эластичность спроса на электроэнергию по x_{it}

В долгосрочном периоде $\varphi \to 1$, следовательно, $\beta_i \varphi \to \beta_i$, что представляет собой оценку долгосрочной эластичности спроса на электроэнергию по параметру x_i .

6. Результаты эмпирических исследований

6.1. Результаты эмпирических исследований по США.

В 1981 году Боуи были оценены краткорочные и долгосрочные эластичности спроса на электроэнергию по цене и по доходу с помощью моделей Фишера-Кейзена и частичной корректировки.

Таблица 1. Эластичность спроса на электроэнергию по модели Фишера-Кейзена.

	Краткосрочная Эластичность	Долгосрочная Эластичность
по цене	[-0.16;-0.25]	[-1.1;-1.3]
по доходу	0.2	[0.7;1.1]

Источник: Берндт, Э.: Практика эконометрики: классика и современность, Глава 7, стр. 391, 392.

Таблица 2. Эластичность спроса на электроэнергию по модели частичной корректировки

	Краткосрочная Эластичность	Долгосрочная Эластичность		
по цене	-0.2	-1.0		
по доходу	[0.08;0.15]	[1.1;2.2]		

Источник: Берндт, Э.: Практика эконометрики: классика и современность, Глава 7, стр. 391, 392.

6.2. Результаты эмпирических исследований по России.

Таблица 2. Эмпирические работы по электроэнергетике по России.

Авторы и название	Методы и данные	Вывод	Комментарии
работы Катышев П.К., Пересецкий А.А., Чернавский С.Я., (ЦЭМИ), Эйсмонт О.А.(РЭШ). Влияние повышения тарифов на природный газ и электроэнергию на отрасли российской экономики.	Пространственная выборка данных за 2001 год о производстве электроэнергии, потреблении топлива, числу рабочих, расходах на топливо и рабочую силу по 56 из 74 существующих российских АОэнерго РАО ЕЭС.	эластичность цены электроэнергии по цене природного газа равна 0.37	в исследовании оценивался не спрос на электроэнергию, а ее цена (издержки)
Egorova S., Volchkova N., Tourdyeva N. (PЭШ) "Sectoral and regional analysis of indus- trial electricity demand in Russia"	Панельные данные о потреблении электроэнергии по промышленным предприятиям в четырех регионах РФ (Волгоградская, Воронежская, Пермская и Самарская области) за 1998—2002 г.	оценка эластичности спроса на электро- энергию по цене со- ставила [-0.2;-0.4]	спрос на электроэнергию исследовался по выборке предприятий из четырех регионов
Эйсфельд А.А. (ВГУ) "Эконометрическое моделирование спроса на энергоресурсы в России"	Анализ месячных данные о спросе и цене на нефть, газ и электроэнергию в России в 1999 - 2002 годы с использованием инструментария анализа временных рядов	Получены значения эластичностей спроса на электроэнергию по цене э/э и перекрестные эластичности по ценам газа и нефти	не выяснен вопрос со стационарностью ря- дов
Лукаш Е.Н, Поливин О.С., Савин В.В. (ЭФ МГУ) «Надвигающийся электроэнергетический кризис в России: сроки и масштабы»	Временная выборка годовых данных за 1993-2004 годы по потреблению э/э, цене на э/э и ВВП	Получены значения эластичностей и построен среднесрочный прогноз спроса на электроэнергию	является наиболее цельным и обоснованным из российских исследований

Источник: составлено авторами

7. Анализ среднесрочных эластичностей спроса на электроэнергию по России в целом

7.1. Анализ среднесрочных эластичностей спроса на электроэнергию по России в целом на основе годовых данных

Зависимость *потребления электроэнергии по России за год* (КWH, млрд. КВт-ч) от:

- 1. дохода, измеряемого в данном случае *реальным ВВП в ценах 2000 года* (YR, в млрд. руб.)
- 2. цен на электроэнергию. При этом в качестве показателя цен использовались *реальные средние цены производителей электроэнергии на конец года* в ценах 2000 года (Р, руб. за тыс. КВт-ч.).

Таблица 3. Порядок интегрируемости используемых в разделе «Россия в целом» временных рядов, годовые данные.

№		Ряд	Порядок интегри-	Исходный ряд			Ряд первых разно- стей		Ряд вторых разно- стей	
"-		1 77,4	руемости	None	Trend	Intercept	None	Trend	None	Trend
1		YR, lnYR ¹	$I(2) (I(1))^2$	нестац	стац (5%)	нестац	стац (10%)	нестац	стац (5%)	стац (10%)
2	-2006	t_YR³	I (1) (I(0))	стац (10%)	нестац	нестац	стац (5%)	стац (10%)	ı	-
3	1992	KWH, lnKWH	I(1)	нестац	стац (1%)	нестац	стац (1%)	стац (5%)	-	-
4		t_KWH	I(0)	стац (1%)	стац (10%)	стац (5%)	ı	-	ı	-
5	-2006	p, lnp	I(2) (I(1))	нестац	нестац	нестац	стац (10%)	нестац	стац (5%)	нестац
6	1993	t_p	I (1) (I(0))	стац (10%)	нестац	нестац	стац (1%)	-	-	-

Источник: составлено авторами на основе данных www.cir.ru и $ИЭ\Phi$ с помощью пакета EViews.

Таблица 4. Корреляционная матрица временных рядов, годовые данные.

	KWH	P	YR
KWH	1	-0.27	0.95
P	-0.27	1	-0.48
YR	0.95	<mark>-0.48</mark>	1

Источник: составлено авторами на основе данных www.cir.ru и ИЭФ с помощью пакета EViews.

7.1.1. Модель Фишера-Кейзена.

Спецификация выглядит следующим образом:

$$\ln q_{i,t} - \ln q_{i,t-1} = \gamma_i + \alpha_i (\ln P_{i,t} - \ln P_{i,t-1}) + \beta_i (\ln Y_{i,t} - \ln Y_{i,t-1}) + \varepsilon_t$$

Все ряды в первых разностях логарифмов (в таблице тестов на стационарность обозначены как t_x) интегрируемы нулевого порядка на 10% уровне значимости, что позволяет построить регрессию темпа роста потребления электроэнергии от темпа роста реальных средних цен на электроэнергию и реального ВВП.

Анализ коррелограммы зависимой переменной показал, что в остатках изучаемого ряда электропотребления присутствуют авторегрессионная составляющая первого порядка и компонента скользящей средней первого порядка: AR(1) и MA(1).

² В скобках указан порядок интергированности ряда на 10% уровне значимости, он обозначен желтым цветом в таблице, без скобок – на 5% уровне, выделен розовым цветом.

 $^{^{1} \}ln x$ - натуральный логарифм положительного показателя x.

³ Темп прироста показателя x: $t_x = \frac{\Delta x}{x} = \frac{x_2 - x_1}{x_1} \cong \Delta \ln x$. В качестве x используются переменные YR, KWH и P

Таблица 5. Основные результаты по модели Фишера-Кейзена раздела «Россия в целом», годовые данные.

		Зависимая переменная	Объ	Объясняющие переменные					
Спе- цифи-		T_KWH	T_YR	T_P	AR(1)	MA(1)	Константа	Adj R- squared	Prob (F-stat)
кация	Порядок интегрированности	I(0)	I(0)	I(0)					
1	1995-2006	Коэфф-т	0,425*	-0,045*	-0,408**		-0,007*	0,809	0,001
2	1994-2006	Коэфф-т	0,448*	-0,039*		-0,99*	-0,007*	0,942	0,000
3	1993-2006	Коэфф-т	0,484*				-0,008*	0,877	0,000

Источник: составлено авторами с использованием пакета EViews.

Примечание

- * коэффициент значим на 5% уровне
- ** коэффициент значим на 10% уровне

Розовым цветом выделены эластичности по реальным ценам

Синим цветом выделены эластичности по реальному ВВП

Приведем для понимания таблицы в явном виде конечный результат по спецификации 2.

$$t _KWH = -0.007 - 0.039 \cdot t _P + 0.448 \cdot t _YR - 0.99 \cdot \mu_{t-1}$$

Adjusted R-squared = 0.942

7.1.2. Модель частичной корректировки

Спецификация выглядит следующим образом:

$$\ln q_t = \alpha \varphi + (1 - \varphi) \ln q_{t-1} + \beta_1 \varphi \ln Y_t + \beta_2 \varphi \ln P_t + \varepsilon_t$$

В качестве зависимой переменной выступает логарифм потребления электроэнергии, а в качестве объясняющих – логарифм электропотребления в предыдущем периоде (году), логарифм реального ВВП в ценах 2000 года, логарифм реальных средних цен на электроэнергию производителей в ценах 2000 года.

Включение в регрессии компонент AR(1) и MA(1) обоснованно, так как из коррелограммы LNKWH следует наличие этих компонент.

Таблица 6. Основные результаты по модели частичной корректировки раздела «Россия в целом», годовые данные.

		Зависимая переменная	Объясня	іющие і	перемені				
Специфи- кация		LNKWH	LNKWH(-1)	LNYR	LNP	MA(1)	Константа	Adj R- squared	Prob (F-stat)
	Порядок интегрируемости	I(1)	I(1)	I(1)	I(1)				
1	1993-2006	Коэфф-т	0,848*		-0,101*		1,669*	0,870	0,000
2	1993-2005	Коэфф-т	0,271*	0,233*	-0,034*	-0,978*	3,061*	0,991	0,000
3	1993-2006	Коэфф-т	0,291*	0,269*	_		2,398*	0,958	0,000

Источник: составлено авторами с использованием пакета EViews.

Примечание:

В каждой спецификации ряды коинтегрируемы.

Розовым цветом выделены эластичности по реальным ценам.

Синим цветом выделены эластичности по реальному ВВП.

Зеленым цветом выделен показатель (1 - параметр корректировки).

^{* -} коэффициент значим на 5% уровне

^{** -} коэффициент значим на 10% уровне

Прогнозирование спроса на электроэнергию в России в среднесрочной перспективе (до 2010 года)

Приведем для понимания таблицы в явном виде конечный результат по спецификации 2.

$$LNKWH = 3,061 + 0,271 \cdot LNKWH_{-1} - 0,034 \cdot LNP + 0,233 \cdot LNYR - 0,978 \cdot \mu_{-1} + 0.000 \cdot LNP + 0$$

Adjusted R-squared = 0.991, все коэффициенты значимы на 5% уровне.

7.1.3. Учет оппортунистического поведения российских экономических агентов.

$$\xi = rac{Q_{cmoum}^{(KWH)} - NAR}{Q_{cmoum}^{(KWH)}}$$
 - формула расчета коэффициента корректировки

- NAR (Net Accounts Receivable) чистая дебиторская задолженность, млрд. руб.,
- $Q_{cmoum}^{(KWH)}$ продукция электроэнергетической отрасли в стоимостном выражении в текущих ценах, млрд. руб.
- $P_SKORR = \xi \times P$, P_SKORR ряд реальных средних цен производителей электроэнергии, скорректированных на чистую дебиторскую задолженность измеряется в руб. за тыс. кВт*ч.

Коэффициент корректировки принадлежит промежутку $\xi \in (0,968;1,104)$

1) Спецификация модели Фишера-Кейзена с учетом скорректированных цен выглядит следующим образом:

$$t_KWH = -0.006 - 0.052 \cdot t_P_SKORR + 0.411 \cdot t_YR - 0.363 \cdot \varepsilon_{-1}$$

Adjusted R-squared = 0.8

Все ряды интегрируемы одного порядка – нулевого, все коэффициенты значимы на 10% уровне.

2) Спецификация модели частичной корректировки с учетом скорректированных цен выглядит следующим образом:

$$\ln KWH = 1,97 + 0,81 \cdot \ln KWH_{-1} - 0,105 \cdot \ln P _SKORR$$
Adjusted R-squared = 0,86

Все ряды интегрируемы одного порядка – первого, выполняется коинтегрированность, все коэффициенты значимы на 5% уровне.

Полученная эластичность спроса в модели Фишера-Кейзена по скорректированной цене (-0,052) немного отличается от эластичности по нескорректированным ценам (-0,045) (см. спецификацию 1 в таблице 3). В модели частичной корректировки наблюдаем аналогичное явление (-0,105) и (-0,101) соответственно (см. спецификацию 1 в таблице 4). Такое незначительное отличие обусловлено близостью к единице коэффициента корректировки.

7.2. Анализ среднесрочных эластичностей спроса на электроэнергию по России в целом на основе квартальных данных.

Зависимость *потребления электроэнергии по России за год* (КWH, млрд. КВт-ч) от:

- 1. *реального ВВП в ценах* 1 квартала 2003 года (YR, в млрд. руб.)
- 2. реальных цен на электроэнергию в ценах 1 квартала 2003 года (Р, руб. за тыс. КВт-ч.).

Ряд потребления электроэнергии и реального ВВП охватывает период с первого квартала 1995 по первый квартал 2007 года, а ряд данных по ценам на электроэнергию — с первого квартала 2000 года по первый квартал 2007 года. Поэтому далее анализ квартальных данных представлен в двух разрезах: с ценами (по 49 точкам) и без цен (по 29 точкам).

7.2.1. Период – 1 квартал 2000 – 1 квартал 2007 (с ценами)

Таблица 7. Порядок интегрируемости используемых в разделе «Россия в целом» временных рядов, квартальные данные.

No		Ряд	Порядок интегриру-	И	Ісходный ряд		Ряд первых	к разностей	Ряд вторых разностей	
п/п			емости	None	Trend	Intercept	None	Trend	None	Trend
1		KWH, log(KWH)	I (1)	нестац	стац(10%)	нестац	стац(5%)	стац(10%)	-	-
2	7:1	t_KWH	I (0)	стац(5%)	стац(5%)	стац(5%)	-	-	-	-
3	2000:1-2007	YR, log(YR)	I (1)	нестац	нестац	нестац	стац(10%)	стац(1%)	-	-
4	06:7	t_YR	I (0)	стац(5%)	стац(1%)	стац(1%)	-	-	-	-
5	700	p, log(p)	I (2) (I(1))	нестац	нестац	стац(5%)	стац(10%)	нестац	стац (1%)	стац (1%)
6		t_p	I (1) (I(0))	стац(10%)	нестац	нестац	стац(1%)	стац(1%)	-	-

Источник: составлено авторами на основе данных ЦМАКП с помощью пакета EViews.

При построении моделей Фишера-Кейзена не удалось подобрать хороших спецификаций как при анализе с ценами, так и при анализе без цен.

7.2.1.1. Модель частичной корректировки без учета цен.

Таблица 8. Корреляционная матрица логарифмов используемых временных квартальных рядов

	LNKWH	LNP	LNYR
LNKWH	1	-0.03	0.97
LNP	-0.03	1	0.06
LNYR	0.97	0.06	1

Источник: составлено авторами на основе данных ЦМАКП с помощью пакета EViews.

Уравнение с результатами по этой модели:

$$LNKWH = 3,27 + 0,66LNKWH_{-1} + 0,12LNYR$$

Adjusted R-squared = 0.966

Все коэффициенты значимы на 5% уровне значимости, ряды коинтегрируемы.

7.2.1.2. Модель частичной корректировки с учетом цен.

Результаты оценки модели и полученные значения эластичностей:

$$LNKWH = 9,89 + 0,33LNYR - 0,04LNP$$

Adjusted R-squared = 0.976

Все коэффициенты значимы на 10% уровне значимости, ряды коинтегрируемы.

7.2.2. Период – 1 квартал 1995 – 1 квартал 2007 (без цен)

Все ряды также были проверены на стационарность с помощью ADF-тестов, и в соответствующие модели включались только ряды, интегрируемые первого порядка.

Нам удавалось получить спецификации по модели Фишера-Кейзена, в которых были значимы все переменные, однако, они характеризовались очень низким значением коэффициента детерминации, поэтому был сделан вывод о том, что они не подходят для прогнозирования.

Основные результаты оценки представлены ниже:

$$LNKWH = 3,66 + 0,62LNKWH_{-1} + 0,13LNYR$$

Adjusted R-squared = 0.976

Все коэффициенты значимы на 1% уровне значимости, ряды коинтегрируемы.

8. Анализ среднесрочных эластичностей спроса на электроэнергию по промышленности

Использовалась временная выборка годовых данных (1994-2005) по следующим показателям:

- 1) Потребление электроэнергии в промышленности (KWH)
- 2) Индекс промышленного производства, рассчитанный к уровню 1990 года (INDEX_PROM_PR)
- 3) *Средние реальные цены на электроэнергию в промышленности*, скорректированные на индекс цен на промышленную продукцию, взвешенный по энергопотреблению отраслей (P_REAL)

Таблица 9. Корреляционная матрица временных рядов по промышленности.

	KWH	INDEX_PROM_PR	P_REAL
KWH	1.00	0.98	-0.56
INDEX_PROM_PR	0.98	1.00	-0.62
P REAL	-0.56	-0.62	1.00

Источник: составлено авторами с помощью пакета EViews.

Таблица 10. Порядок интегрируемости используемых в разделе «Промышленность» временных рядов.

	Ряд	Порядок инте-	Исходный ряд			Ряд первых разно- стей		Ряд вторых раз- ностей	
		грируемости	None	Trend	Intercept	None	Trend	None	Trend
	INDEX_PROM_PR	I (2)	нестац	нестац	нестац	нестац	нестац	стац (1%)	-
2005	t_INDEX_PROM_PR	I (1)	нестац	нестац	нестац	стац (1%)	ı	-	-
1994-	KWH	I (2)	нестац	нестац	нестац	нестац	нестац	стац (1%)	-
	t_KWH	I (1)	нестац	нестац	нестац	стац (1%)	-	-	-

Источник: составлено авторами с помощью пакета EViews.

Модель Фишера-Кейзена: $\Delta \ln KWH = -0.01 + 0.50 \times \Delta \ln INDEX_PROM_PR$ $\stackrel{(0.003)}{R^2} \stackrel{(0.047)}{(adj)} = 0.92$

Выводы:

- Значимое влияние индекса промышленного производства на потребление электроэнергии.
- Значение среднесрочной эластичности спроса на электроэнергию по индексу промышленного производства, составило 0,5.
- Среднесрочная эластичность спроса на электроэнергию по доходу для России в целом немного ниже и колеблется в промежутке значений [0,41;0,48].

9. Анализ среднесрочных эластичностей спроса на электроэнергию по населению.

Временные ряды за период с 1993 – 2005 гг.:

- 1. Потребление электроэнергии жилым сектором (KWH)
- 2. Средний реальный тариф в домах без электроплит в ценах 2000 г на конец года, за 100 кВт*ч (Р)
- 3. Базисный индекс реальных денежных доходов населения 1992=100 (I_YR_baz)

Анализ графиков по населению (см. рис. 1) указывает на отсутствие схожих тенденций между потреблением электроэнергии (синяя линия) и реальными ценами (красная) и реальными доходами (зеленая).

Рисунок 1. Динамика основных показателей по населению.

Прогнозирование спроса на электроэнергию в России в среднесрочной перспективе (до 2010 года)

Источник: составлено авторами на основе данных ИЭФ, www.cir.ru, www.hse.ru и собственных расчетов.

Построение эконометрических моделей Фишера-Кейзена и частичной корректировки указывает на отсутствие влияния реальных доходов и реальных цен на потребление электроэнергии населением (незначимы соответствующие коэффициенты).

10. Анализ эластичностей спроса на электроэнергию на региональном уровне

Для анализа региональных данных были собраны следующие данные за 2000, 2001 и 2002 года по 72 регионам России:

- *реальный ВРП* (руб.) Y_REAL
- цены за приобретенную электроэнергию (руб. за 100 КВт ч) P_REAL
- потребление электроэнергии (КВт ч) KWH
- средние температуры января и июля (градусы Цельсия) T_JAN, T_JUN

Результаты для пространственной выборки 2000 года:

$$\ln(KWH) = 1.35 - 0.60 \ln(P_REAL) + 0.15 \ln(T_JAN) + 0.87 \ln(Y_REAL)$$

$$(0.59) \quad (0.11) \quad (0.05) \quad (0.04)$$

$$R^{2}_{adj} = 0.88$$

Проблема: обнаружение гетероскедастичности.

Таблица 11. Результаты регионального анализа.

Показатель	2000 год	2001 год	2002 год	Среднее значение
Эластичность спроса на электроэнергию по доходу	0,87	0,90	0,89	0,89
Эластичность спроса на электроэнергию по цене	- 0,60	- 0,67	- 0,71	- 0,66
Эластичность спроса на электроэнергию по средней температуре января	- 0,15	- 0,08	-0,14	- 0,12

Источник: составлено авторами на основе данных www.cir.ru и ЦМАКП с использованием пакета EViews.

Проблема: обнаружение гетероскедастичности

Выводы:

- Наличие обратной связи между средней температурой января и потреблением электроэнергии
- Отсутствие связи между средней температурой июля и потреблением электроэнергии

11. Прогнозирование среднесрочного спроса на электроэнергию в России до 2010 года Алгоритм прогнозирования состоит из следующих этапов:

- 1) выбор значимой эконометрической модели, по которой будет составлен прогноз;
- 2) оценивание этой модели до последнего наблюдения, содержащего значения как зависимой, так и объясняющих переменных (до 2006 года в случае годовых данных, до 1 квартала 2007 в случае квартальных).

- 3) прогнозирование объясняющих переменных модели до 2010 года на основе а) прогнозов, составленных МЭРТом в случае годовых данных, б) прогнозов, предоставленных ЦМАКП в случае квартальных ланных.
- 4) с помощью функции "forecast" в пакете EViews пересчет зависимой переменной по прогнозам объясняющих и по оцененным коэффициентам эконометрической модели;
- 5) вывод о правдоподобности прогноза.

11.1. на основе годовых данных.

В качестве базовых сценариев прогнозирования объясняющих переменных нами были использованы прогнозы МЭРТа основных макроэкономических показателей до 2010 года, которые подразделяются на два варианта:

Вариант 1 (инерционный) отражает развитие российской экономики в условиях низких темпов роста экспорта углеводородов при продолжающемся ухудшении конкурентоспособности отечественной продукции. Темпы роста ВВП снижаются с 6,8 % в 2006 году до 5,3-5,2% в 2009-2010 годах.

Вариант 2 (умеренно оптимистичный) ориентируется на относительное улучшение конкурентоспособности российского бизнеса и активизацию структурных сдвигов за счет реализации комплекса мер по ускорению экономического роста. При такой же, как и в первом варианте, конъюнктуре на мировых рынках энергоносителей, темпы роста ВВП в 2009-2010 годах повышаются до 5,9 и 6,1 процентов.

- 2 варианта спецификаций эконометрических моделей:
- 1) включение в модель в качестве регрессора ТОЛЬКО реального ВВП;
- 2) включение в модель как реального ВВП, так и реальных цен на электроэнергию.

	Спенификания	без реальных цен	Спецификация с реальными ценами		
	темп прироста к	потребление в 2010		потребление в 2010	
	пред. периоду в %	году, млрд кВт*ч	пред. периоду в %	году, млрд кВт*ч	
Danware 1	1,75-2,04	1051	1,11-1,57	1025-1027	
Вариант 1	1,96-2,13	1059	1,06-1,46	1027	
Danwayer 2	2,08-2,23	1063	1,36-1,75	1035-1038	
Вариант 2	2,21-2,26	1066	1.16-1.58	1034	

Таблица 12. Матрица прогнозных значений.

Источник: составлено авторами на основе данных www.cir.ru и с использованием пакета EViews.

В первой строке в каждом варианте представлена спецификация Фишера-Кейзена, во второй – модель частичной корректировки.

Основные выводы по построенным прогнозам:

- Прогнозные значения потребления электроэнергии по различным спецификациям (Фишера-Кейзена и модель частичной корректировки) близки друг к другу.
- По более оптимистичному варианту развития российской экономики (вариант 2) прогноз электропотребления выше по обеим моделям.
- Прогноз с включением цен на электроэнергию ниже, чем без учета цен

11.2. на основе квартальных данных.

В этом разделе прогнозы зависимых переменных были предоставлены ЦМАКП в одном варианте.

Прогнозирование было осуществлено по трем значимым моделям, представленных в разделе «Анализ эластичностей по России в целом на основе квартальных данных».

	Модель с ценам	ми, 2000-2007	Модель без цен, 2000-2007		Модель без цен, 1995-2007		
Год	Потребление в	Темп приро-	Потребление	Темп приро-	Потребление в	Темп прироста спроса, в %	
	год, млрд кВт*ч	ста спроса, в	в год, млрд кВт*ч	ста спроса, в	год, млрд кВт*ч		
2006	989,0	3,69	989,0	3,69	989,0	3,69	
2007	996,6	0,77	995,8	0,69	998,3	0,94	
2008	1 018,5	2,20	1 019,2	2,35	1 022,9	2,47	
2009	1 035,4	1,66	1 040,4	2,07	1 044,7	2,12	
2010	1 052,9	1,69	1 060,9	1,98	1 065,9	2,03	

Таблица 13. Прогнозирование по квартальным данным

Источник: построено авторами с использованием пакета EViews

Полученные прогнозы по годовым и по квартальным данным получились близки друг к другу,

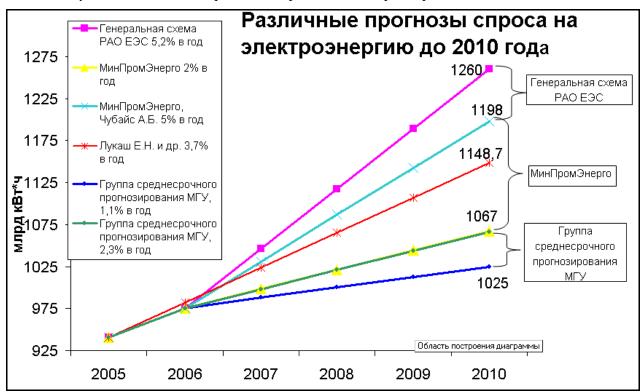
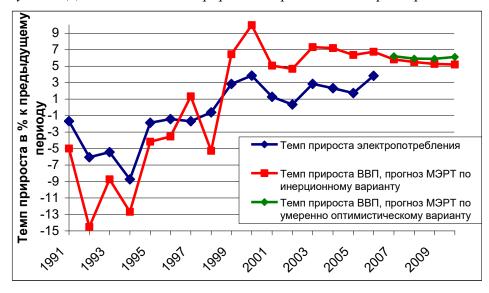

12. Сравнение полученных прогнозов с прогнозами из других источников.

Таблица 14. Сводная таблица прогнозов спроса на электроэнергию из различных источников

№ п/п	Автор	Дата	Прогноз спроса к 2010 году, Млрд. кВт*ч	Среднегодовой темп прироста до 2010 года, %	Применяемые методы прогнозирования	
1	Р. С. Левкин, М. Е. Мамонов, А. А. Пестова. Прогнозирование спроса на электроэнергию в России в среднесрочной перспективе. МГУ им. Ломоносова	21.06.2007	1025-1066	1,1-2,3	Эконометрические модели в различных спецификациях, прогноз ВВП - сценарии МЭРТ	
2	МинПромЭнерго. «Среднесрочная программа развития электроэнергетики на 2006 - 2010 годы»	07.06.2006	1045	2,2		
3	А. Б. Чубайс, РАО «ЕЭС России». Новая инвестиционная программа	13.02.2007	1198 5		Экстраполяция кратко- срочных тенденций на	
4	Б. Ф. Вайнзихер. «Генеральная схема размещения объектов электроэнергетики до 2020 года». Предложения РАО «ЕЭС России»	05.04.2007	1197 – 1260 (базовый – мак- симальный)	4,1 – 5,2 (базовый – мак- симальный)	среднесрочную перспективу.	
5	В. Б. Христенко. «Об обеспечении экономики страны электро- энергией и газом». МинПром- Энерго	30.11.2006	1067 - 1198	2,1 - 5	2,1 — экстраполяция тенденций 2000 — 2005 5 — экстраполяция тенденций 2006 с учетом заявок на подключение	
6	Е. Н. Лукаш, О. С. Поливин, В. В. Савин. Надвигающийся электроэнергетический кризис в России: сроки и масштабы. МГУ им. Ломоносова	11.11.2006	1148,7	3,9	Модель частичной корректировки (долгосрочная эластичность спроса по ВВП = 0,33). Прогноз ВВП – удвоение 2000-10	

Источник: составлено авторами


Pисунок 2. Pазличные прогнозы спроса на электроэнергию в $P\Phi$ до 2010 года.

Источник: составлено авторами

Энергоемкий экономический рост? Наличие устойчивой связи между ВВП и электропотреблением, которая прослеживается как на годовых, так и на квартальных данных.

Рисунок 3. Динамика темпов прироста спроса на электроэнергию и ВВП.

Источник: составлено авторами

Прогнозы Е.Н.Лукаша и др., оказались завышенными, так как они ориентировались на удвоение ВВП за период 2000-2010 гг., чего не произойдет, согласно прогнозам ВВП МЭРТ до 2010 года. По варианту 1 реальный ВВП 2010 года вырастет по сравнению с 2000 годом на 77,5% (не на 100%!), а по варианту 2 на 81,5%.

Прогнозирование спроса на электроэнергию до 2010 года без рассмотрения его факторов и только на основе последних тенденций привело к построению более высоких прогнозов РАО и МинПромЭнерго (см. строки 3, 4, 5 в таблице 11), так как эти прогнозы были основаны на шоке электропотребления 2006 года – 3,8%.

13. Результаты работы группы среднесрочного прогнозирования.

- Эластичность спроса на электроэнергию по ВВП в России по нашим оценкам составляет 0,23-0,48 (на основе годовых данных).
- Отсутствуют существенные различия между прогнозами спроса на электроэнергию по России, полученными на основе годовых и квартальных данных, что указывает на устойчивость полученных нами прогнозов
- Отсутствует влияние реальных доходов и цен на потребление электроэнергии населением
- Подтверждение основных гипотез:
 - 1. о существенном влиянии ВВП на потребление электроэнергии,
 - 2. о менее существенном влиянии цен на спрос на электроэнергию, чем в развитых странах,
 - 3. о влиянии средней температуры зимы на электропотребление в регионах
- Прогнозы РАО ЕЭС и МинПромЭнерго основаны на предположении о росте электроемкости российского ВВП, что ведет к более высокому прогнозируемому электропотреблению. Такая гипотеза спорна и требует дополнительной аргументации

14. Список использованной литературы.

- 1. Сайт высшей школы экономики. URL: http://www.hse.ru/ Раздел «Наука». Экономикостатистические базы данных.
- 2. Сайт УИС Россия. URL: http://www.cir.ru/
- 3. Сайт Министерства экономического развития России. URL: http://www.economy.gov.ru/
- 4. Айвазян С.А., Мхитарян В.С. Основы эконометрики.
- 5. Доугерти К. Введение в эконометрику. М.: ИНФРА-М, 1997.
- 6. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. М.: Дело, 2004.
- 7. Эрнст Берндт. Практика эконометрики: классика и современность. Глава 7. «Спрос на электроэнергию: структурный подход и применение методов временных рядов». М.: Юнити-Дана, 2005.
- 8. Катышев П.К., Пересецкий А.А., Чернавский С.Я., Эйсмонт О.А. Влияние повышения тарифов на природный газ и электроэнергию на отрасли российской экономики.
- 9. Egorova Svetlana, Volchkova Natalya and Natalya Tourdyeva. Sectoral and regional analysis of industrial electricity demand in Russia / Working Paper #. Moscow, New Economic School, 2004.
- 10. Эйсфельд М.А. Эконометрическое моделирование спроса на энергоресурсы в России.
- 11. Е.Н. Лукаш, О.С. Поливин, В.В. Савин «Надвигающийся электроэнергетический кризис в России: сроки и масштабы». 2006.
- 12. Об обеспечении экономики страны электроэнергией и газом. Презентация В.Христенко 30.11.2006
- 13. Energy Industry: Retarding or Driving Force for Economic Advancement? Презентация А. Чубайса 13.02.2007
- 14. Генеральная схема размещения объектов электроэнергетики до 2020 года. Презентация Б. Вайнзихера 05.04.2007
- 15. О перспективах развития электроэнергетики Российской Федерации. Презентация МинПромЭнерго 07.06.2006.