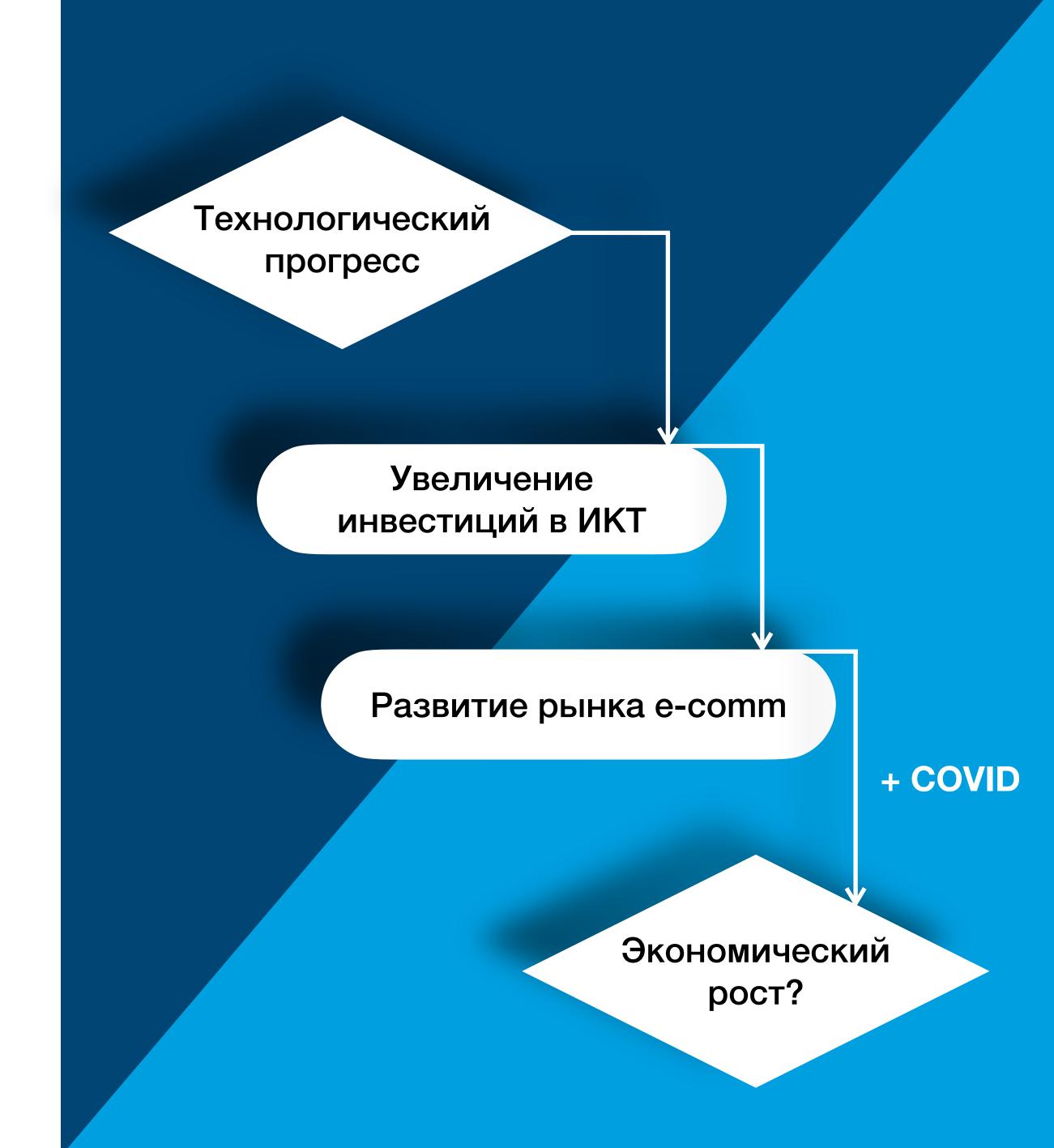
Влияние инвестиций в электронную коммерцию на экономический рост в России

THE IMPACT OF INVESTMENTS IN THE E-COMMERCE ON ECONOMIC GROWTH IN RUSSIA


Экономический факультет МГУ имени М.В. Ломоносова

Выполнил: Харьков Роман Константинович

> Научный руководитель: Шагас Наталия Леонидовна

АКТУАЛЬНОСТЬ

- ✓ Всё больше магазинов начинают продавать online, и рынок еcommerce увеличивается. (Covid + развитие IT)
- ✓ Из-за развития ІТ и увеличения online покупок, всё больше магазинов перестаёт продавать offline.
- ✓ Из-за пандемии и роста (в несколько раз) рынка е-сотт нельзя точно определить влияние на экономический рост.

ЦЕЛИ И ЗАДАЧИ

ЦЕЛЬ:

На основе критического обзора литературы построить эконометрическую модель оценки влияния инвестиций в E-com на экономический рост, опираясь на каналы влияния инвестиций в ИКТ.

ЗАДАЧИ:

- 1. Провести критический анализ теоретической и эмпирической литературы.
- 2. Построить эконометрическую модель, опираясь на индексы из изученной литературы.
- 3. На основе микроданных смоделировать влияние инвестиций в Ecommerce на экономический рост.

ПЛАН РАБОТЫ

- ✓ Глава I. Исследование влияния ИКТ на экономический рост в развитых и развивающихся странах: анализ литературы
- √ Глава II. Построение эконометрической модели
- √Глава III. Моделирование влияния на микроданных
- √ Заключение
- √Список литературы

ГЛАВА I. Исследование влияния ИКТ на экономический рост в развитых и развивающихся странах: анализ литературы.

[A.Yousefi, 2011]

- ✓ Анализ учитывает 62 страны в период с 2000 по 2006 год.
- ✓ Уравнение показывает зависимость роста производительности труда от роста капитала за час работы (Кс и Ко отражают капитальные услуги за счет капитала ИКТ и всех других видов капитала).
- ✓ Мы исследуем, помогли ли и в какой степени передовые ИКТ развивающимся странам повысить производительность и ускорить рост.

$$\frac{\dot{Y}_t}{Y_t} - \frac{\dot{L}_t}{L_t} = \frac{\dot{A}_t}{A_t} + \alpha * \left[\frac{\dot{K}_{C_t}}{K_{C_t}} - \frac{\dot{L}_t}{L_t} \right] + \beta * \left[\frac{\dot{K}_{O_t}}{K_{O_t}} - \frac{\dot{L}_t}{L_t} \right]$$

ИТОГИ НЕДОСТАТКИ

- ✓ Статистически значимая оценка для капиталовложений в ИКТ, однако для группы с доходом ниже среднего является незначительной.
- ✓ Недостатком исследования A. Yousefi отметил отсутствие результатов по конкретным странам, которые смогли бы дать оценку по определенным вкладам в рост выпуска.

Table 4. High income group.

Variable name	Estimated coefficient	Standard error	<i>T</i> -ratio, 192 DF	P-value	Partial corr.	Standardized coefficient	Elasticity at means
NICT ICT EG Constant	$\begin{array}{r} 0.19132 \\ \hline 0.21738 \\ 0.49846 \\ -1.8325 \end{array}$	0.2644×10^{-1} 0.6471×10^{-1} 0.6424×10^{-1} 0.6996	7.236 3.359 7.759 -2.619	0.000 0.000 0.000 0.010	0.463 0.236 0.489 -0.186	0.2852 0.1483 0.2931 0.000	0.9270 0.4259 0.2316 -0.5765

Γable 5. Upper-middle income group.

Variable name	Estimated coefficient	Standard error	<i>T</i> -ratio, 115 DF	P-value	Partial corr.	Standardized coefficient	Elasticity at means
NICT ICT EG Constant	0.26961 0.34885 0.10297 -1.7685	0.7595×10^{-1} 0.1846 0.5403×10^{-1} 1.894	3.550 1.890 1.906 -0.9339	0.001 0.061 0.059 0.352	0.314 0.174 0.175 -0.087	0.2982 0.1610 0.1030 0.0000	$0.8500 \\ 0.4765 \\ 0.0468 \\ -0.4137$

Table 6. Lower-middle income group.

Variable name	Estimated coefficient	Standard error	<i>T</i> -ratio, 101 DF	P-value	Partial corr.	Standardized coefficient	Elasticity at means
NICT ICT EG Constant	0.16954 0.69877×10^{-1} -0.27934×10^{-1} 1.4278	0.4017×10^{-1} 0.1000 0.4306×10^{-1} 0.9056	4.220 0.6987 -0.6488 1.577	0.000 0.486 0.518 0.118	0.387 0.069 -0.064 0.155	0.4245 0.0681 -0.0354 0.0000	0.6315 0.0726 -0.0128 0.2907

[T.Niebel, 2018]

- ✓ Выборка из 59 стран за период с 1995 по 2010 год.
- ✓ По результатам нельзя утверждать, что развивающиеся страны и страны с переходной экономикой получают от инвестиций больше, чем развитые страны. Следовательно, «скачок» за счет ИКТ довольно сомнителен.
- ✓ В качестве недостатка автор отмечает тот факт, что данные развивающихся стран и стран с переходной экономикой представлены не в полной мере.

 $\Delta \ln Y_{c,t} = \beta_{ICT} \Delta \ln K_{c,t}^{ICT} + \beta_{NICT} \Delta \ln K_{c,t}^{NICT} + \beta_L \Delta \ln L_{c,t} + \beta_X X_{c,t} + \lambda_t + \mu_c + \epsilon_{c,t}$

ТАБЛИЦА РЕЗУЛЬТАТОВ

	Developing			Emerging			Developed		
	(1) POLS	(2) RE	(3) FE	(4) POLS	(5) RE	(6) FE	(7) POLS	(8) RE	(9) FE
Δln(ICT Cap. Serv)	0.066***	0.074***	0.077**	0.059**	0.055**	0.048*	0.084**	0.077**	0.048**
Δln(N.ICT Cap. Serv.)	(0.015) 0.296**	(0.014) 0.269**	$(0.022) \ 0.177^{*}$	(0.028) 0.309***	(0.024) 0.281***	(0.028) 0.246***	(0.037) 0.212	(0.033) 0.161	(0.023) -0.142
•	(0.127)	(0.117)	(0.101)	(0.068)	(0.062)	(0.077)	(0.167)	(0.160)	(0.096)
Δln(Labor Serv.)	-0.092 (0.102)	-0.037 (0.062)	0.002 (0.042)	0.390 ^{***} (0.071)	0.402*** (0.082)	0.419*** (0.098)	0.446*** (0.081)	0.432*** (0.081)	0.397 ^{***} (0.077)
Constant	2.715*** (0.511)	2.592*** (0.500)	2.919*** (0.682)	1.538** (0.586)	1.630*** (0.510)	1.813*** (0.414)	1.198** (0.450)	1.366*** (0.407)	1.977*** (0.364)
Year Dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted R ²	0.353	0.393	0.233	0.453	0.483	0.469	0.705	0.722	0.710
Observations	280	280	280	316	316	316	297	297	297

[Cheng C. Y., Chien M. S., Lee C. C., 2021]

- ✓ В данном анализе представлено 72 страны в период с 2000 по 2015 год.
- ✓ Модель с добавленными факторами ИКТ (мобильные пользователи (МU), процент пользователей Интернета (IU) и защищенные интернетсерверами на 1 миллион человек (IS); валовое накопление капитала (INV), начальный уровень ВВП на душу населения (IGC)

$$Y_{it} = \alpha_0 + \beta_0 GDPPC_{it-1} + \beta_1 IGC_i + \beta_2 INV_{it} + \beta_3 ICT_{it} + \beta_4 X_{it} + \varepsilon_{it}$$

итоги, выводы и недостатки

- ✓ Распространение ИКТ может улучшить экономический рост в странах с высоким уровнем дохода, но эффект неоднозначен в странах со средним и низким уровнем дохода.
- ✓ Для более точной оценки влияния инвестиций в ИКТ на экономический рост, необходимо рассмотреть пострановые исследования, которые учитывают специфику и внешние факторы исследуемой страны.

Variable	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
GDPPC(-1)	0.153***	0.014*	0.017433***	0.019**	0.018*	0.023	0.146***
	(0.000)	(0.096)	(0.006)	(0.049)	(0.087)	(0.118)	(0.000)
IGC	-0.400***	-3.623***	-3.322***	-2.550***	-1.142***	-1.842***	-1.077**
	(0.001)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.03)
INV	1.999***	1.830***	2.643***	2.365***	2.264***	1.966***	2.527***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
FDP	-0.220***				-0.212***	-0.158***	-0.362***
	(0.000)				(0.000)	(0.000)	(0.000)
MU		0.484***			0.179***		
		(0.000)			(0.000)		
IU			0.371***			0.293***	
			(0.000)			(0.000)	
IS				0.084**			0.233***
				(0.034)			(0.001)
TEI	0.185***	0.010	0.470***	0.421***	0.365***	1.503***	0.368
	(0.000)	(0.930)	(0.000)	(0.000)	(0.000)	(0.000)	(0.368)
INF	-0.087***	-0.086***	-0.072***	-0.080***	-0.094***	-0.068***	-0.148***
	(0.000)	(0.000)	(0.000)	(0.001)	(0.000)	(0.009)	(0.008)
AR (2) (P-value)	0.883	0.886	0.975	0.944	0.7804	0.994	0.881
Sargan Test (P-value)	0.373	0.369	0.379	0.345	0.152	0.401	0.162
N.country	72	72	72	72	72	72	72
N.obs	1152	1152	1152	1152	1152	1152	1152

ГЛАВА II. Построение эконометрической модели

ПОКАЗАТЕЛЬ ДЛЯ ОЦЕНКИ ВКЛАДА ИКТ	ЧТО ПОКАЗЫВАЕТ?
MU	Мобильные пользователи
IU	Пользователи интернета
IS	Пользователи, защищенные интернет-серверами на 1 миллион человек
ICTD	Индекс распространения ИКТ
Z	Затраты на инвестиции в ИКТ
NET	Использование Интернета
E	Затраты на потребляемую энергию

ГЛАВА III. Моделирование влияния на микроданных

Какие данные?

- ✓ Планируется рассматривать данные е-com, опираясь на маркетплейсы
- ✓ OZON есть доступ
- **√** WB
- ✓ СБЕРМЕГАМАРКЕТ есть канал
- ✓ AliExpress

SAKTHOUEHI/IE

CINCOK JIVIEPATYPЫ