Канал издержек денежно-кредитной политики в экономике России

Александр Ведищев

Научный руководитель: О.А.Клачкова

11 апреля 2024 года

Мотивация

- ❖ Управление ставкой один из главных инструментов ДКП, важно понимать передаточный механизм от изменения ставки к ценам.
- ❖ Многие исследования (Sims (1992), Christiano, Eichenbaum and Evans (2005), Д.Е. Шестаков (2017)) указывают на наличие "парадокса цен".
- Если парадокс цен объясняется наличием канала издержек ДКП, то эффективность манипулирования ставкой может сокращаться.

Микро-модель

Объяснения парадокса цен

- Эндогенность монетарной политики.
- Наличие канала издержек.

Вопрос, цель, гипотеза

Исследовательский вопрос:

Присутствует ли влияние канала издержек ДКП в российской экономике?

Цель:

Выявление эффекта повышения ключевой ставки Центрального банка РФ на рост цен через канал издержек.

Гипотеза:

Действие канала издержек приводит к снижению эффективности монетарной политики ЦБ за счет разнонаправленности воздействия каналов издержек и спроса.

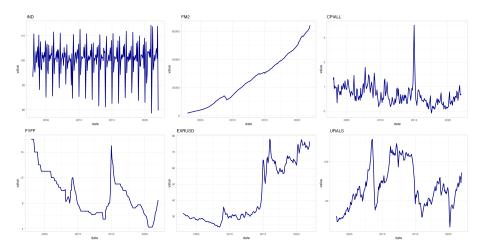
Литература

- ◆ Barth III and Ramey (2001) одна из первых и главных статей на тему. Авторы подтверждают наличие канала издержек в экономике США до 1980-ых, который пропадает на более позднем периоде.
- ❖ Статьи Christiano, Eichenbaum and Evans (2005), Ravenna and Walsh (2006), Chowdhury, Hoffmann and Schabert (2006), Rabanal (2007) используют наборы данных по разным странам и оценивают модели на агрегированных данных (VAR, GMM).
- ❖ В Gaiotti and Secchi (2006) авторы используют микроданные на уровне фирм и указывают на наличие канала издержек в экономике Италии.
- ◆ В российской литературе существуют работы на агрегированных данных Д.Е. Шестаков (2017) (канал изд. отсутствует) и на секторальном уровне Е.П. Добронравова (2022)

План работы

- ◆ Оценка моделей на агрегированных данных (VAR, FAVAR, TVP-FAVAR-SV)
- Оценка моделей на микроданных

Данные


В данной части работы используется 93 ряда (денежные агрегаты, ставки, рынок труда, биржевые индексы, курсы валют, индексы производства, цены золота и нефти, индексы цен). Где необходимо, устранена сезонность (методом SEATS-X13-ARIMA) и проведены преобразования для обеспечения стационарности.

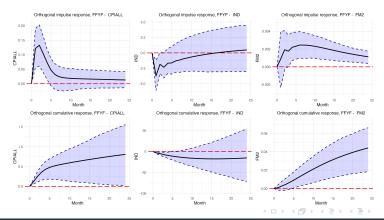
Описательная статистика

Таблица 1: Основные переменные (для модели VAR)

	Набл.	Среднее	Ст. откл.	Мин.	Кв.(25)	Медиана	Кв.(75)	Макс.
IND	229	100.42	6.44	78.70	98.90	101.00	103.60	114.20
FM2	229	25,593.15	17,294.62	1,940.19	11,406.46	24,309.60	38,504.72	64,310.72
CPIALL	229	0.67	0.41	-0.08	0.39	0.60	0.90	3.51
FYFF	229	9.29	3.21	4.25	6.75	8.50	11.19	18.00
EXRUSD	229	43.21	18.14	23.35	28.76	31.65	62.93	77.89
URALS	229	68.22	26.94	16.61	47.34	63.75	86.63	128.74

Динамика основных переменных

$$\begin{bmatrix} F_t \\ Y_t \end{bmatrix} = \sum_{l=1}^{L} \Phi_l \begin{bmatrix} F_{t-l} \\ Y_{t-l} \end{bmatrix} + \nu_t, \tag{1}$$


где Y_t — вектор наблюдаемых переменных $(M \times 1)$, F_t - вектор дополнительных параметров $(K \times 1)$ и v_t - случайные ошибки с нулевым матожиданием и ковариационной матрицей $\mathbb Q$.

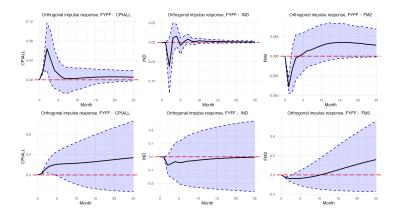
VAR

Введение

Для VAR модели связи между F_t и Y_t нет, Y_t содержит данные, описанные выше.

Результаты:

Описание модели FAVAR


Для получения этой модели на следующем этапе отвергается принятая ранее предпосылка о виде матриц Φ_I . Вектор F_t представляет собой набор ненаблюдаемых переменных, определяющих экономическую динамику. Эти параметры влияют на большие число наблюдаемых факторов, информационное множество X_t , представляющее собой вектор $(N \times 1)$. Предполагается, что N > M + K, также N может быть больше T. Связь X_t с F_t и Y_t описывается следующим уравнением:

$$X_t = \Lambda^f F_t + \Lambda^y Y_t + \varepsilon_t \tag{2}$$

Матрица Λ^f $(N \times K)$, является матрицей факторной нагрузки, определяющей вклад каждого из факторов из F_t во временные ряды X_t .

Оценивание производится двухшаговым методом, предложенным Bernanke, Boivin and Eliasz (2005).

Результаты FAVAR

Описание модели TVP-FAVAR-SV (1)

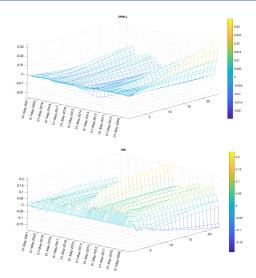
В построении модели используется методология, предложенная Cogley and Sargent (2005) и применявшаяся в Baumeister, Liu and Mumtaz (2013) и Д.Е. Шестаков (2017), допускающую изменение коэффициентов матриц Φ_I согласно следующему правилу:

$$\Theta_t = \Theta_{t-1} + \eta_t, \tag{3}$$

где $\Theta_t = [\Phi_{1t}, ..., \Phi_{Lt}]$, а η_t – независимые случайные величины с одинаковым распределением и матожиданием 0.

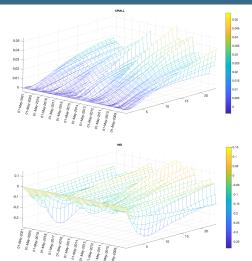
Описание модели TVP-FAVAR-SV (2)

Модель дополняется гетероскедастичными шоками, объясняющими волатильность временных рядов:


$$Var(v_t) = Q_t = A_t^{-1} H_t(A_t^{-1})',$$
 (4)

где – диагональная матрица стохастических волатильностей, – нижнетреугольная матрица, содержащая информацию о мгновенных взаимосвязях эндогенных переменных Primiceri (2005).

$$H_{t} = \begin{bmatrix} h_{1,t} & 0 & \dots & 0 \\ 0 & h_{2,t} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & h_{K+M,t} \end{bmatrix}, A_{t} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ \alpha_{21,t} & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ \alpha_{K+M1,t} & \alpha_{K+M2,t} & \dots & 1 \end{bmatrix}$$


$$(5)$$

Результаты TVP-FAVAR-SV

Результаты TVP-FAVAR-SV с сезонным сглаживание ИП

Модель

Производственная функция фирмы имеет следующую структуру:

$$Y_{it} = AL^{\alpha}_{it}M^{\beta}_{it},\tag{6}$$

Для осуществления производства фирмы привлекают внешнее финансирование:

$$Cr_{it} = w_{rst} \cdot L_{it} + q_{rst} \cdot M_{it},$$
 (7)

Привлечение финансирования осуществляется под процент r_{it} . Тогда общие издержки фирмы за период могут быть представлены следующим образом:

$$C_{it} = (1 + r_{it}) \cdot (w_{rst} \cdot L_{it} + q_{rst} \cdot M_{it})$$
(8)

Основная спецификация

$$\dot{P}_{rt} = \mu_i + \tau_t + \beta_1 \theta_{it} \dot{w}_{rst} + \beta_1 \sigma_{it} \dot{q}_{rst} - \beta_3 prod_{it} + \beta_4 \Delta r_{it}, \tag{9}$$

где μ_i и τ_t – фиксированные эффекты фирмы и времени, \dot{P}_{rt} – рост цен, θ_{it} и σ_{it} – доли затрат фирмы на труд и материалы, \dot{w}_{rst} и \dot{q}_{rst} – изменение цен на труд и материалы, Δr_{it} – изменение ставки процента, $prod_{it}$ – мера продуктивности производства, вычисляемая как разность роста реальной выручки и роста реальных затрат фирмы на материалы и оплату труда, взвешенных на соответствующие доли $(prod_{it} = \dot{y}_{it} - \theta_{it} \dot{L}_{it} - \sigma_{it} \dot{M}_{it})$.

Данные

Для получения итоговой панели используются базы данных СПАРК и ЕМИСС. Данные о фирмах собираются поэтапно, объединяются между собой и с данными статистики.

Переменные (I)

Введение

 \dot{P}_{rt} – индекс потребительских цен с разбивкой по регионам

 θ_{it} и σ_{it} — отношение затрат на оплату труда и платежей поставщикам и подрядчикам к платежам по текущим операциям, соответственно

 \dot{w}_{rst} — среднемесячной заработной платы в соответствующем регионе и секторе

 \dot{q}_{rst} — индекс цен производителей в соответствующем регионе и секторе или рассчитанный самостоятельно индекс

Переменные (II)

Введение

 $prod_{it}$ — разность роста реальной выручки и роста затрат фирмы на платежи поставщикам и подрядчикам и оплату труда, взвешенных на соответствующие доли. Реальные показатели получаются делением номинальных на дефлятор (в основной спецификации — накопленный ИЦП по региону и сектору, в дополнительной — накопленный индекс цен на материалы)

 Δr_{it} – отношение процентов к уплате и отношение процентных платежей к суммарному объему заемных средств (краткосрочных и долгосрочных)

Дополнительный индекс затрат на материалы

Индексы цен вычисляется по следующей формуле:

$$I_{mat_price,t} = I_{VDS,m} Z_t, \tag{10}$$

где $I_{VDS,t}$ - вектор индексов-дефляторов ВДС в год t, Z_t - матрицы затрат отрасли, выраженных в долях от общего промежуточного потребления продукции других отраслей в год t.

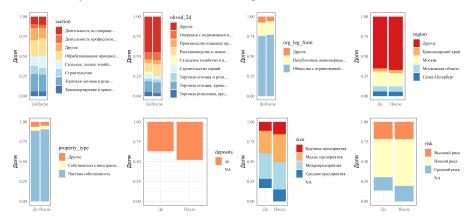

Описательная статистика

Таблица 2: Описательная статистика

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Median	Pctl(75)	Max
θ_{it}	154,967	0.14	0.13	0.0000	0.04	0.10	0.20	1.00
σ_{it}	154,967	0.67	0.22	0.0000	0.54	0.71	0.85	1.00
w _{rst}	154,967	1.10	0.12	0.10	1.05	1.09	1.14	11.61
\dot{q}_{rst}	154,967	8.81	13.59	-66.78	1.77	6.39	12.27	302.01
q _{rst} Mat price q _{rst}	154,442	-2.58	5.76	-26.31	-6.00	-1.18	0.81	22.92
Δr_{it}^{1}	151,924	0.18	10.36	-99.95	-2.13	-0.02	2.33	99.90
∆r _{it} ∆r ² _{it}	113,727	0.18	11.29	-98.52	-2.64	-0.02	2.75	99.19
P _{rt}	154,967	6.22	3.30	1.12	3.78	5.21	8.57	17.54
prod _{it}	43,189	0.14	1.04	-98.85	-0.004	0.11	0.26	129.62
prod ^{'Mat} – ^{pr}	^{rice} 154,442	0.18	0.82	-12.22	-0.01	0.14	0.35	11.22

Смещение распределения после очистки

При очистке панели число наблюдений сокращается с 2 200 тыс. до 150 тыс. Приводит ли это к заметному смещению?

Результаты

Таблица 3: Результаты основной панели

	Dependent variable:						
	срі						
	(1)	(2)	(3)	(4)			
I(labour share *I wage)	-0.0486	-0.0965	-0.1060***	-0.1816***			
	(0.0542)	(0.0835)	(0.0308)	(0.0459)			
I(mat share *icp)	0.0026***	0.0026***					
,	(0.0005)	(0.0005)					
I(mat share *mat price)			0.0041***	0.0037***			
,			(8000.0)	(0.0009)			
prod	-0.0010	-0.0057	0.0034	0.0048			
	(0.0034)	(0.0090)	(0.0026)	(0.0038)			
d r 1	0.00002		0.0002				
	(0.0003)		(0.0002)				
d r 2		0.0005		0.0002			
		(0.0004)		(0.0002)			
Observations	51,871	39,030	184,751	135,235			
R ²	0.0012	0.0013	0.0003	0.0004			
Adjusted R ²	-0.3472	-0.3637	-0.3641	-0.3820			
F Statistic	11.2726***	9.4895***	10.6880***	9.3385***			

Источники

- Barth III. Marvin J. and Valerie A Ramey. 2001. "The cost channel of monetary transmission." NBER macroeconomics annual, 16: 199-240.
- Baumeister, Christiane, Philip Liu, and Haroon Mumtaz, 2013, "Changes in the effects of monetary policy on disaggregate price dynamics." Journal of Economic Dynamics and Control, 37(3): 543-560.
- Bernanke, Ben S, Jean Boivin, and Piotr Eliasz. 2005. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach." The Quarterly journal of economics, 120(1): 387-422.
- Chowdhury, Ibrahim, Mathias Hoffmann, and Andreas Schabert, 2006, "Inflation dynamics and the cost channel of monetary transmission." European Economic Review, 50(4): 995-1016.
- Christiano. Lawrence J. Martin Eichenbaum, and Charles L Evans. 2005. "Nominal rigidities and the dynamic effects of a shock to monetary policy." Journal of political Economy, 113(1): 1-45.
- Cogley, Timothy, and Thomas J Sargent. 2005. "Drifts and volatilities: monetary policies and outcomes in the post WWII US." Review of Economic dynamics, 8(2): 262-302.
- Gaiotti, Eugenio, and Alessandro Secchi, 2006. "Is there a cost channel of monetary policy transmission? An investigation into the pricing behavior of 2,000 firms." Journal of Money, Credit and Banking, 2013-2037.
- Primiceri, Giorgio E. 2005. "Time varying structural vector autoregressions and monetary policy." The Review of Economic Studies, 72(3): 821-852.
- Rabanal, Pau. 2007. "Does inflation increase after a monetary policy tightening? Answers based on an estimated DSGE model." Journal of Economic Dynamics and control, 31(3): 906-937.
- Rayenna, Federico, and Carl E. Walsh, 2006, "Optimal monetary policy with the cost channel," Journal of Monetary Economics, 53(2): 199-216.

Sims, Christopher A. 1992. "Interpreting the macroeconomic time series facts: The effects of monetary policy."