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1 STATIC DEMAND ESTIMATION

1 Static Demand Estimation

• Why do we care about demand system estimation? One of the key ingredients in a
number of Industrial Organization (IO) questions. I.e.:

– Entry/exit decisions;

– Market size definition (merger analysis);

– Production decisions.

• Lets focus on the differentiated product markets.

• Consider the market with J heterogeneous goods.

• There are two ways to proceed with estimation: treat each product as a good itself,
or treat a product as a bundle of characteristics.

1.1 Product Space

1.1.1 Linear Demand

• Think about a market with j goods: j = 1, · · · , J . Proposed demand equation:

qi = ai +
∑
j

bijpij + εij

where qi is demand for good i, pij are price coefficients, bij are marginal effects, ai
are product-specific intercepts and εij are the random shocks.

• Allow to compute own and cross price elasticities.

• The most obvious problem: we can get negative value for qi

1.1.2 Log-linear/Constant Elasticity Demand

• Solution: use log-linear/constant elasticity demand:

logqi = αi + ηilogm+

k∑
j=1

εijlogpj + εi

where m is income and ηi is income elasticity

• Looks like Marshallian demand curve.

• Well, another problem: adding up constraint does not hold unless ηi = 1 ∀i:
∑k

i=1wiηi =
1 where wi are the expenditure shares.
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1.2 Characteristic Space: Models 1 STATIC DEMAND ESTIMATION

1.1.3 Almost Ideal Demand System

• Deaton and Muellbauer (1980) [14] address it by finding a specific form of the cost
function and specifying the market share equation:

wi = αi +
k∑
j=1

γijlogpj + βilog(
X

P
) + εi

where P is a price index

logP = α0 +
∑
j

αjlogpj +
1

2

∑
j

∑
l

γjllogpjlogpl

This is referred to as Almost Ideal Demand System (AIDS).

• We can back out elasticities from the parameters:

eMij = −I{i = j}+
γij
wi
− βi
wi
wj

εHij = eMij + ηiwj

ηi = 1 +
βi
wi

• Can decrease the number of estimated parameters imposing a number of constraints:∑k
i=1 αi = 1,

∑k
i=1 γij = 0,

∑k
i=1 βi = 0, γij = γji.

• Still have a number of problems:

– There are K2 + 2K + 1 parameters to estimate.

– People often ignore the nonlinear specification and simply estimate OLS. We
need an instrument for each price!

– Can say nothing about new products entering the markets.

1.2 Characteristic Space: Models

• Treat each product as a bundle of characteristics xj .

• Can define utility function consumer i obtains from purchasing product j is

uij = u(xj , pj , νi)

where pj is the price of product j, and νi represents the vector of consumer tastes,
distributed with density f(ν) over the population.

• Assume products are strong substitutes, that is consumer needs to buy only one
product. In this case consumer would buy product j if utility of product j exceeds
utility of all other products:

I(i choose j) = I(uij(·) > uik(·) ∀k 6= j) (1)
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1.2 Characteristic Space: Models 1 STATIC DEMAND ESTIMATION

• We can define the region of f(ν) where consumers prefer product j as

Aj(X, p) = {νi ∈ RL|(uij(·) > uik(·) ∀k 6= j}

• Now we can define the market share of the good j as

sj =

∫
Aj(X,p)

f(ν)dν (2)

Knowing the market share and the market size, we can easily back out the demand
by

qj = Msj

• How do we solve this integral? There are two way to proceed:

– Assume a particular distribution which will make the solution analytic (i.e. logit
or nested logit models)

– Use simulations or quadratures to approximate the integral.

• Similarly, as econometricians we can use distribution f(ν) to define the probability
of consumer j choose i:

Pr(i choose j) = Pr(uij(·) > uik(·) ∀k 6= j) (3)

In this case

Pr(i choose j) =

∫
Aj(X,p)

f(ν)dν

• In what follows we stick to the interpretation (2) as we discuss aggregate demand.
Interpretation (3) would be useful later in the discussion of individual choice models.

1.2.1 Logit Model

• Assume additively separable utility functions:

uij = Xjβ + αpj + εij

where εij denotes consumer idiosyncratic taste for product j (which before was in-
cluded into νi) (was is the dimension of εi now?)

• Assume a particular functional form for εij :

εij ∼ iid T1EV (ε)

which is Type 1 Extreme Value distribution2 with location parameter 0 and scale
parameter 1:

F (εij) = exp(−exp(−εij))
2Also known as Gumbel distribution
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1.2 Characteristic Space: Models 1 STATIC DEMAND ESTIMATION

• Using the properties of T1EV distribution (difference of two independent T1EV is
distributed logistically) we can write the market shares as

sj(X, p) =

∫
· · ·
∫
Aj

f(dεi1, · · · , dεiJ) =
eXjβ+αpj∑
k e

Xkβ+αpk
=

eδj∑
k e

δk
(4)

where δj is the mean utility of product j.

• We do not observe the actual utility, which requires us to make some normalizations:
on the location and on the scale:

– Scale is implicitly normalized as logit error term has a fixed variance;

– Location is usually normalized by δ0 = 0, which reflects the outside option.

• Examine price derivatives and elasticities in order to characterize demand function:

Own-price marginal effect:
∂qj
∂pj

=
∂sj
∂pj

M = M

[
α

eδj∑
k e

δk
− α(

eδj∑
k e

δk
)2

]
= Mαsj(1−sj)

Cross-price marginal effect:
∂qj
∂pk

=
∂sj
∂pk

M = M

[
−α eδjeδk

(
∑

k e
δk)2

]
= −Mαsjsk

(Check that own and cross-price elasticities exhibit similar problems)

• Own-price derivatives vary only with the market size of good j. This is restrictive as
two products with the same market size (say BMW and Kia) should have the same
own-price elasticity (completely unintuitive in the example of BMW and Kia).

• Things are even worth in cross-price derivatives: if sBMW = sKia cross-price marginal
effect of price of Mercedes on both BMW and Kia should be the same. Obviously
makes no sense.

• In a way market shares are ”sufficient statistics” for substitution patterns. This is
often said to be the result of the logit model; however, it rather comes from iid tastes
of consumers over products:

uij = δj + εij ⇒ sj = f(δj , δ1, · · · , δJ)

sj = sk ⇒ δj = δk

• Logit models have another problem: Independence of Irrelevant Alternatives (IIA)
property. It says that

sj
sk

does not depend on other products.

• Classical example is when consumer needs to choose 1) between red bus and a car;
2) between red bus, blue bus and a car. If sRED BUS

sCAR
= 1/2 in the first model (33.3%

of consumers choose a bus), then sRED BUS
sCAR

= 1/2 in the second model (but now 50%
of consumers choose a bus: 25% a red bus and 25% a blue one). Once again makes
no sense.

• These problems can be solved by allowing for correlation in consumer tastes, i.e.
people with high εRED BUS would also have high εBLUE BUS . However, if try to
estimate all elements in the variance-covariance matrix Σεi we need to estimate (J2+
J)/2 elements, which is the same problem as we had in case of product space demand
estimation.
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1.2 Characteristic Space: Models 1 STATIC DEMAND ESTIMATION

• We can try to put some restrictions on Σεi such that the space of parameters is not
too big.

1.2.2 Nested Logit Model

• We can use some prior knowledge about the structure of the market to divide products
into G nests.

• Assume that nests are exclusive (product can be only in one nest).

• Redefine consumer utility as

uij = Xjβ + αpj + ζigj + (1− σ)εij = δj + νij

where

– δj = Xjβ + αpj

– νij = ζigj + (1− σ)εij

– ζjgj is a specific taste of group gj and is iid over groups.

• What is the structure of Σν?

E(νijνik) =

{
σ2ζ if (j, k) ∈ g
0 otherwise

• Market share is defined as in (4):

sj =

∫
· · ·
∫
Aj

f(dζi, dεi) (5)

• Cardell (1996) [10] shows that ∀σ there exists a unique distribution of ζi such that if
εi ∼ iid EV then νij ∼ iid EV

• Nested Logit model makes this particular assumptions, which makes an integral in
(5) analytical:

sj(X, p) = sj|gsg =
exp(

δj
1−σ )∑

k∈gj exp(
δk
1−σ )


(∑

k∈gj exp(
δk
1−σ )

)1−σ
∑

g

(∑
k∈gj exp(

δk
1−σ )

)1−σ
 (6)

where sj|g stands for the market share of good j in the nest g, and sg stands for the
market share of nest g.

• Price elasticities in this case would be stronger within group than between groups
(derivation is the same as for logit).

• What happens as we change σ?

– as σ → 1, substitution would be only within group;
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1.2 Characteristic Space: Models 1 STATIC DEMAND ESTIMATION

– as σ → 0, we get back to logit model.

• Extensions to this include multiple level of nests (Cardell 1997 [10]), overlapping
nests (Bresnahan, Stern, Trajtenberg 1997 [7]), ordered nests.

• Nested models are quite powerful. However, often criticized for setting the groups
a-priori.

1.2.3 Random Coefficients Models

• Redefine consumer utility as

uij = Xjβi − αipj + εij

Notice that now we allow both β and α to vary across consumers: intuitively we
would expect that now price elasticities should be very flexible.

• However, we need to impose some structure of βi and αi, otherwise we have (M+1)N
parameters to estimate with N observations (M is the number of characteristics).

• One way to proceed is to assume a particular distribution for βi and αi, i.e.:

– βi consist of M independent marginals, where

βim ∼ N(βm, σ
2
m)

– αi can be interpreted as consumer distaste for price:

lnαi ∼ N(α, σ2α)

(why do we use log-normal instead of normal in this case?)

• As before, we assume that εij ∼ iid T1EV .

• Obviously, it is a generalized version of the logit model. It also appears to be a
generalized version of the nested logit model.

• Define
βim = βm + σmβ̃im β̃im ∼ N(0, 1)

αi = exp(α+ σαα̃i) α̃i ∼ N(0, 1)

Now we can rewrite uij as

uij = Xjβ − αpj +

[∑
m

σmxjmβ̃im − σαpjα̃i + εij

]
= δj + νij

• Notice that νij would be correlated across products as it contains xj and pj . That
is, cross-price elasticities with products that have more similar characteristics would
be higher.

• It seems like the result we want. What are the caveats?
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1.3 Characteristic Space: Estimation 1 STATIC DEMAND ESTIMATION

• Well, one thing is that once again we make very specific assumptions on parameters.
This can be slightly improved by using empirical distribution of demographics.

• Another problem is more severe. Rewrite the market share equation:

sj =

∫
· · ·
∫
Aj

f(dβ̃i, α̃i, dεi) (7)

Unfortunately there is no analytical solution for (7). One way to go is to use quadra-
tures, but these becomes infeasible as the number of integrals gets > 5 (what number
of integrals would you expect say for cola market? automobile market?)

• This is not a problem for bayesian econometrics (discussed today at the Data Analysis
section).

• If we want to stay in the frequentists domain we need to simulate this integral. For
an arbitrary function f(·) and arbitrary distribution with pdf g(·):

Y =

∫
f(z)g(z)dz ≈ 1

NS

∑
NS

f(zns)

where z1, · · · , zNS are NS random draws from g(·).

• This is sometimes referred to as pure frequency simulator. Easy to show that it is
unbiased.

• Suits for solving (7), but requires setting NS to a very big number. Can we do better
than that?

• Recall that for εij ∼ T1EV we could solve the integral analytically. Use this fact to
rewrite (7) as

sj =

∫
· · ·
∫ exp

(
Xjβ − αpj +

[∑
m σmxjmβ̃im − σαpjα̃i

])
1 +

∑
k exp(·)

f(dβ̃i, α̃i) (8)

(why did we get one in the denominator?)

Now there is ”only” M+1 integrals to simulate and 2(M+1) parameters to estimate.

1.3 Characteristic Space: Estimation

1.3.1 Berry’s inverse

• Usually we observe prices, quantities (market shares) and product characteristics.
Theoretical model predicts that

sj = sj(x, p;β, α)

We need to find such β and α that this equality holds (at least approximately)
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1.3 Characteristic Space: Estimation 1 STATIC DEMAND ESTIMATION

• Intuitive way to go is to minimize the distance between the two. Usual way to think
about it is to add an unobservable and find β and α that minimize it:

sj = sj(x, p;β, α) + ηj

• Assuming that ηj is independent of X and p (that is, ηj is a corresponding measure-
ment error) we can simply use the corresponding moments for estimation.

• As econometricians we might not observe all X, so we use only a subset of X for
estimation. In this case independence of ηj and p is a very strong assumption (why?)

• Berry (1994) [5] criticized this specification by pointing that unobservables should be
inside of the market share. He suggested using the following specification:

uij = Xjβ + αpj + ξj + εij

where ξj correspond to product characteristics that are unobserved to econometrician
(but observed to the firms and consumers). Under the assumption of T1EV on εij
we are back in the case of logit specification.

• Same way as in (4), we can write

sj(X, p) =

∫
· · ·
∫
Aj

f(dεi1, · · · , dεiJ) =
eXjβ+αpj+ξj∑
k e

Xkβ+αpk+ξk
(9)

• Berry (1994) shows that there exist a very simple inversion of this non-linear function.
Specify one of the goods as an outside good with ui0 = εi0. In this case

sj =
eXjβ+αpj+ξj

1 +
∑

k 6=0 e
Xkβ+αpk+ξk

s0 =
1

1 +
∑

k 6=0 e
Xkβ+αpk+ξk

Denominator of any market share is the same. Moreover, the ratio of market share of
product j and market share of the outside good would not depend on characteristics
and price of other products than j:

sj
s0

= eXjβ+αpj+ξj

Taking the logs:

ln
sj
s0

= Xjβ + αpj + ξj

This looks like a simple linear regression, which can be estimated via OLS or IV.

• The question of endogeneity of ξj still remains, especially the assumption of inde-
pendence of pj and ξj : would we expect prices to be independent of some product
characteristics?

• There is a number of instruments that were proposed:

– Cost shifters - variables that shift costs but do not shift demand;
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1.3 Characteristic Space: Estimation 1 STATIC DEMAND ESTIMATION

– Berry, Levinsohn, Pakes (1995) [6]: In oligopolistic markets - characteristics of
competitors (as a proxy for the closeness of competition);

– Nevo (2001) [31]: In case of a cross-section of markets: prices of products in
another markets.

• But we have just discussed that logit model is very restrictive. Can we derive anything
like that for nested model and for random coefficients?

• There is an analytical expression for the Nested Logit:

ln
sj
s0

= Xjβ + αpj + σln(sj|g) + ξj

where sj|g is the share of good j in the nest g. Once again, if σ = 0 this simplifies to
a simple logit model.

• What about Random Coefficients? Recall that we need to solve

s = s(X, p, ξ, θ)

where θ = {β, α, σ, σα}. By taking logs, adding ξ to both side and rearranging:

ξ = ξ + ln(s)− s(X, p, ξ, θ)

• BLP prove that operator

T (ξ) = ξ + ln(s)− s(X, p, ξ, θ)

is a contraction mapping. By finding a fixed point we get the correspondence between
ξ and θ.

• In case of Logit and Nested Logit, we could use IV to estimate parameters θ. Anal-
ogously we could use GMM procedure. In case of Random Coefficients, GMM is the
only option.

• Notice that GMM requires solving for the fixed point on every step of the estimation.
For people who attended micro session yesterday - does it ring a bell? This class
of algorithms got the name Nested Fixed Point algorithms in the literature (same
procedure as used in estimation of dynamic games).

1.3.2 BLP 1995

• In their paper BLP use a slightly different version of utility function

uij = Xjβi + αln(yi − pj) + ξj + εij

where yi stands for household i income. Does it make sense? Well, first is that it
coincides with Cobb-Douglas utility function. Second is that this is an analogue of
random coefficient distribution - we can use empirical distribution of income. Ar-
guably good a-priori expectation of the shape of distribution.
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1.3 Characteristic Space: Estimation 1 STATIC DEMAND ESTIMATION

• BLP also add supply side to the model. Assume firm n owns K cars. Then its profits
are

Pn =
∑
k

(pk −mck)Msk

where mck stands for marginal costs. Assuming constant marginal costs the first
order condition ofr price is

∂Pn
∂pj

= sj +
∑
k

(pk −mck)
∂sk
∂pj

= 0 (10)

• Specify marginal costs as
mcj = exp(Xjγ + ωj)

and plug it back to (10):

sj +
∑
k

(pk − exp(Xjγ + ωj))
∂sk
∂pj

= 0 (11)

• This gives us J equations (number of products) and J unobservables ωj . Equations
can be inverted in terms of ωj . Notice that we know all components of (11) except
parameters γ and unobservables ωj (how do we know ∂sk

∂pj
?).

• BLP use the following moment conditions to estimate parameters:

E

( ξj
ωj

)
| X

 = 0

• Writing it is sample analogues:

GJ(θ) =
1

J

∑
j

( ξj(θ)
ωj(θ)

)
⊗ fj(X)


which is then multiplied by some (optimal) weighting matrix B (dim(θ)×J) and set
to zero3 :

BGJ(θ) = 0

• Notice that Berry’s inverse works not only for an unobservable ξj , but also for the
mean utility δj . For Random Coefficients:

uij = Xjβ + αpj + ξj +

[∑
m

σmxjmβ̃im + σαpjα̃i + εij

]
= δj + νij

T (δ) = δ + ln(s)− s(X, p, δ, θ)
3We can also think of this as forming the objective

GJ(θ)
′AGJ(θ)

and minimizing it with some optimal matrix A. Two methods are equivalent, and optimal A is

A = V ar(GJ(θ))
−1 = B′B
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1.4 Alternatives and extensions 1 STATIC DEMAND ESTIMATION

• If we are interested only in mean parameters β and α we can simply use IV given
the fixed points of δ:

δj = Xjβ + αpj + ξj

This was proposed by Nevo (2001) in the context of market for cereals (Nevo uses
cross-section of markets as opposed to BLP).

• In their paper BLP use GMM. However, nothing restricts us from specifying a par-
ticular error structure and use MLE.

1.3.3 MPEC method

• In some cases NFXP can be very slow - remember that it requires solving a contraction
algorithm on each iteration. Judd and Su (2012) [11] proposed an alternative method
(in the context of Rust’s (1987) [33] engine replacement problem discussed yesterday).
Can also be applied to BLP-type problems.

• Basic idea: instead of solving ξj as a function of θ treat ξj as a parameter subject to
constraints. Define

GJ(ξj , ωj) =
1

J

∑
j

( ξj
ωj

)
⊗ fj(X)


and solve

minωj ,ξj ,θ GJ(ξj , ωj)
′AGJ(ξj , ωj)

subject to
sj = sj(X, p, ξ, θ) ∀j

sj +
∑
k

(pk − exp(Xjγ + ωj))
∂sk
∂pj

= 0 ∀j

• Judd and Su claim that in some cases (i.e. Rust’s engine replacement) this can be
approximately 50 times faster than solving NFXP. Currently in the literature there
is an ongoing debate if they are correct or not.

1.4 Alternatives and extensions

1.4.1 Probit

• Alternative way of dealing with correlation of the error terms is to use probit.

• As before, consumer utility is

uij = Xjβ − αpj + εij

• Assume
εi ∼ N(0,Σ)

where Σ is a (J × J) dimension matrix.
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1.5 Individual level data 1 STATIC DEMAND ESTIMATION

• Once again, we are back in the case of J2/2 parameters to estimate.

• Another problem is that analytic form of the integral that we used in (4) is no longer
available. In fact, there is no analytic solution to this J dimensional integral.

• However, there is a number of nice properties of normal distribution, i.e. conjugacy
of two normals. This made probit estimation popular among Bayesians.

1.4.2 Extensions

• So far we have looked at cases were agents:

– Have one to one mapping from purchase to consumption;

– Are not forward looking;

– Choose today independently from yesterday;

– Buy only one type of good;

– Choose the type of good, not the quantity;

– Consider all products that are available for purchase;

– Have stable and known (to them) preferences.

• We have to relax the first assumption when we think about storable goods (i.e.
soft drinks): people might behave strategically and respond to promotions, there-
fore maintaining a stock of a product. Most of the papers that relax the purchase-
consumption link involve dynamics.

• Another reason to include dynamics is to assume that past purchases can drive current
purchases, i.e. due to addiction (Becker/Murphy 1988 [4]), cost of thinking (Hoyer
1984 [24]), habit formation (Bronnenberg et al. 2012 [8])

• Discrete choice does not allow for complementarity between the products; a number
of papers aimed to relax it: Hendel (1999) [23], Gentzkow (2007) [17], Rossi et al.
(2002) [25], etc.

• Some papers when even further and tried to consider several markets (Pradeep 2007
[12])

• To estimate most of these models we need individual level data.

1.5 Individual level data

1.5.1 Estimation

• There is an increase in availability of individual level data sets (i.e. on consumer
packaged goods, such as IRI Data Set (Bronnenberg et al. 2007 [9]) or Nielson
Scanner Data);

• Assume we observe consumer i purchasing good j at time period t.
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1.5 Individual level data 1 STATIC DEMAND ESTIMATION

• Consider a simple utility form:

uijt = Xjtβ + αpjt + εijt

Before we assumed logit error to get the expression for the market shares. Now for
every particular choice we can compute the probability of this choice:

Pr(i choose j)(X, p) =

∫
· · ·
∫
Aj

f(dεi1, · · · , dεiJ) (12)

• Making logit assumption on εijt we get

Pr(i choose j)(X, p) =
eXjtβ+αpjt∑
k e

Xktβ+αpkt
(13)

• In case of aggregate level data we observed the market shares. In case of individual
data we observe choices.

• Intuitive way to approach this estimation problem is to maximize probabilities of
observed choices. Can be done via maximum likelihood given a particular assumption
on the error term. Likelihood specification is

L =
∏
i

∏
t

∏
j

Pr(i choose j)(X, p)I(i choose j)

Can easily rewrite it as a log-likelihood:

logL =
∑
i

∑
t

∑
j

I(i choose j)log(Pr(i choose j)(X, p))

• In the same way we can approach nested logit or random coefficients.

• Marketing literature specifies another type of models: latent class models. α and β
are assumed to be different for different segments of buyers (say S segments):

uijt = Xjtβs + αspjt + εijt

• Assign some probability ps of consumer being in each segment. Then we can write
down the likelihood as

L =
∏
i

∑
s

Pr(i is in s)
∏
t

∏
j

Pr(i choose j)(X, p)I(i choose j)

• However, latent class models are just a particular case of random coefficients (with
α and β having some discrete distribution)

• So how can we adjust this simple model to account for various extensions?
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1.5.2 State Dependence

• Simplest way to incorporate dynamics is to include a variable lijt that captures past
choices into the model:

uijt = Xjtβ + αpjt + λlijt + εijt

• Guardini and Little (1983) [20] specify liht as a weighted average of past time period
lijt−1 and choice at period t− 1:

lijt = ωlijt−1 + (1− ω)I(i choose j at t− 1)

with ω being between 0 and 1. If we choose omega big enough lijt is highly au-
tocorrelated, which implies that choice in period t1 would affect choices in periods
t2 = t1 + T with T being quite big (by ”quite big” here I mean around 10). What
are the problems with this specification?

• In the more recent marketing papers ω is simply set to 0: utility from choosing a
good today affects only your choice in the next period.

• Heckman4 (1991) [22] discuss the difference in structural and spurious state depen-
dence, and points out the identification difficulty in case of both heterogeneity of
agents and state dependence.

• In Dube et al. (2012) [15] authors use

uijt = αij + ηipjt + γiI{sit = j}+ εijt

where pjt is price, and sit is state (previous purchase). They allow for a very flexible
form of parameters {α1, · · · , αJ , η, γ} - mixture of 5 normal distributions. To iden-
tify the parameters authors use MCMC methods (discussed today in data analysis
section).

• Dube et al. test the source of state dependence (structural versus spurious) via
including past prices instead of state variable: past prices serve as a proxy for previous
choice. This approach has some limitations (which ones?)

• Marketing literature studying CPG (consumer packaged goods) usually do not in-
strument for prices - prices are assume independent of consumer shock in particular
period t (usually purchase occasion) as changing prices in each period can be very
costly. For obvious reasons a bad strategy in car market analysis.

1.5.3 Extensions

• Among other way the basic model can be extended are:

– Relax the assumption that people know their preferences over the product -
incorporate learning (Ackerberg 2003 [1], Erdem and Keane 1996 [16], Gentzkow
and Shapiro 2008 [18], Sridhar et al. 2005 [30]) and forgetting (Mehta 2004 [28]).

4In the cited paper and a number of other papers
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1.5 Individual level data 1 STATIC DEMAND ESTIMATION

– Relax the assumption that people have perfect information about prices - search
models: non-sequential and sequential search (Stigler 1961 [34], De los Santos
et al. 2011 [13], Kim et al. 2009 [26], Moraga-Gozalez 2006 [29])

– Relax the assumption that people consider all products in the markets - consid-
erations sets

17



2 PRODUCTION FUNCTION

2 Production function

• Production function is a fundamental component of all economies, relate inputs to
outputs

Yj = AjK
βk
j Lβlj

where Yj - output of firm j, Kj - capital inputs, Lj - labor inputs, and Aj - some
technology level. In logs:

yj = β0 + βkkj + βllj + εj

where log(Aj) = β0+εj . β0 can be interpreted as mean efficiency across firms, and εj
can contain innate technology, management differences, measurement errors or any
unobserved sources of variation of output.

• OLS estimation? Problematic, as inputs are correlated with εj .

• I.e. assume competitive input and output markets, capital being fixed, εj fully ob-
served by a firm, and labor choice impacts only current profits. Then

Lj =

[
pj
wj
βlAjK

βk
j

]1/(1−βl)
=

[
pj
wj
βle

β0+εjKβk
j

]1/(1−βl)
(14)

where wj , rj , pj denote prices of inputs and output. That is, Lj depends on εj .

• More generally, Kj also depends on εj , although researchers consider that bias on
βl is usually more severe than bias on βk (Why? Will it change if we think about
neoclassical growth model?)

• Another source of endogeneity: selection due to firm attrition. Firms observe εj and
decide whether to stay in the market. We observe selected sample (conditional on
staying in the market).

• I.e. assume monopolistic firms exogenously endowed with fixed level of capital. As-
sume away dynamics. Firm would exit if

P (εj ,Kj ; pj , wj , β) < Φ

where β ≡ (β0, βl, βk) and Φ is the selloff value. The higher the Kj , the lower the
value of εj the firm can bear. Hence, selection will generate negative correlation
between εj and Kj .

2.1 Traditional solutions

• Lets generalize the production function:

yjt = β0 + βkkjt + βlljt + ωjt + ηjt (15)

where index t stand for time period, and εjt is decomposed into ωjt (observed to
firm) and ηjt (unobserved to firm). Now endogeneity comes only from ωjt (call it
”unobserved productivity”).
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2.1.1 IV estimation

• One way to deal with it is instrumental variables approach: find variables which are
correlated with inputs but uncorrelated with ωjt. Examining (14) we can propose
using rjt and wjt: they affect input and under some conditions are independent of
ωjt (what are the conditions?)

• Even if input price are valid instruments (uncorrelated with ωjt), there are several
problems:

– Firms do not report input prices, and when they do, they report adjusted input
prices (i.e. average wage per worker) (why is it a problem? think about quality
of labor);

– We require variation in the instruments across firms, while input markets are
often national in scope;

– ωjt might depend on some unobserved input; this often makes rjt and wjt invalid
instruments (why?);

– IV approach does not address selection problem: input prices would be corre-
lated with ωjt (which way? might be bad question)

• One possibility to correct for selection is by using selection models (i.e. Heckman
1979 [21])

2.1.2 Fixed effects estimation

• A second traditional approach is fixed effects estimation.

• Assume that ωjt is constant over time. Then equation (15) is

yjt = β0 + βkkjt + βlljt + ωj + ηjt (16)

• Depending on the amount of assumptions on ηjt we want to make we can use various
ways to deal with fixed effects. I.e. assuming strict exogeneity (ηjt are uncorrelated
with input choices ∀t) we can estimate

(yjt − ȳj) = βk(kjt − k̄j) + βl(ljt − l̄j) + (ηjt − η̄j) (17)

via LS procedure.

• This approach solves selection problem, but might also have some problems:

– Assumption ωjt = ωj is quite strong (we may want to examine economic envi-
ronmental changes which affect ωjt);

– If there is measurement error in inputs, fixed effect can produce even worse
results then OLS (Griliches and Hausman 1986 [19]);

– In practice fixed effect produce unreasonably low estimates of capital coefficients
(i.e. returns to scale of 0.6)
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2.2 Olley and Pakes (1996) 2 PRODUCTION FUNCTION

2.2 Olley and Pakes (1996)

• Olley and Pakes (1996) [32] (OP) propose a different approach to solve the endogene-
ity problem;

• They make a number of specific assumptions:

– Time of choosing inputs and dynamic nature of inputs;

– Econometric unobservable is scalar;

– Investment level is strictly monotonic in the scalar unobservable.

• We start with a basic OP model without selection, and add selection issue later.

2.2.1 OP basic model

• Assume production function similar to (15):

yjt = β0 + βkkjt + βlljt + βaajt + ωjt + ηjt (18)

where additional input ajt is the natural log of the age of a plant.

• Assume that ωjt follows exogenous first order Markov process:

p(ωjt+1|Ijt) = p(ωjt+1|ωjt)

where Ijt is the information set of the firm at time t. p(ωjt+1|ωjt) is stochastically
increasing in ωjt.

• This is both econometric assumption on unobservables and economic assumption on
firms’ expectations about ωjt+1.

• Labor is assume to be a non-dynamic input;

• Capital is determined by a deterministic dynamic process:

kjt = κ(kjt−1, ijt−1) = (1− δ)kjt−1 + ijt−1

This implies that capital of the firm in t is determined by capital of the firm in t− 1
and investments in t− 1.

• This implies that unexpected change in ωjt, ωjt−E(ωjt|ωjt−1), is independent of kjt.

• Firm maximizes expected profits; single period profit is

π(kjt, ajt, ωjt,∆t)− c(ijt,∆t)

This profit is conditional on optimal level of ljt as it is a function of ωjt, and ∆t

represents economic environment.

• Given this, firm solves

V (kjt, ajt, ωjt,∆t) = max
{

Φ(kjt, ajt, ωjt,∆t),max
ijt≥0
{π(kjt, ajt, ωjt,∆t)− (19)

− c(ijt,∆t) + βE[V (kjt, ajt, ωjt,∆t)|kjt, ajt, ωjt,∆t, ijt]}
}
(20)

where Φ(kjt, ajt, ωjt,∆t) represents the selloff value.
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• Optimal exit decision rule can be written as

χjt =

{
1 if ωjt ≥ ω̄t(kjt, ajt)
0 otherwise

under assumption that Φ(kjt, ajt, ωjt,∆t) does not increase in ωjt too fast (why?)
and if equilibria exists.

• Investment demand function is

ijt = i(kjt, ajt, ωjt,∆t) = it(kjt, ajt, ωjt) (21)

Pakes (1994) through in some conditions under which this it(·) is strictly increasing
in ωjt (is it intuitive?)

• Given that (21) is strictly increasing in ωjt, we can invert it:

ωjt = i−1t (kjt, ajt, ijt) (22)

Exploits the assumption that ωjt is the only unobservable in the investment equation
(other assumptions?).

• Use this inversion in (18):

yjt = β0 + βkkjt + βlljt + βaajt + i−1t (kjt, ajt, ijt) + ηjt (23)

• Big question is how to estimate (23). One way is to try to solve for the parametric
form on i−1t (·). Note that this requires complete specification of the underlying model
(demand functions, sunk costs, etc.), and then solving a complicated dynamic game
(finding solution in (19)).

• Another way is to use non-parametric estimation (i.e. fit a polynomial in kjt, ajt, ijt
to approximate i−1t (kjt, ajt, ijt), or kernel methods). The downside is that this poly-
nomial will be collinear with a constant, kjt and ajt, so we would not be able to
identify β0, βk, βa.

• Rewrite (23) as

yjt = βlljt + φt(kjt, ajt, ijt) + ηjt (24)

where φt(kjt, ajt, ijt) = β0 + βkkjt + βaajt + i−1t (kjt, ajt, ijt). Notice that we need to
allow φt to be different for different t.

• From (24) we can estimate β̂l and ˆφ(·) via LS. This is the first stage of the estimation.

• In the second stage we would like to identify βk and βa. In the first stage we got an
estimate of

φ(kjt, ajt, ijt) = β0 + βkkjt + βaajt + ωjt

• Conditional on a set of parameters β0, βk and βa we can compute

ω̂jt = φ̂(kjt, ajt, ijt)− (β0 + βkkjt + βaajt)
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• Decompose ωjt into expected and unexpected parts:

ωjt = E(ωjt|Iit−1) + ξjt = E(ωjt|ωjt−1) + ξjt = g(ωjt−1) + ξjt

Notice that kjt and ajt are functions of the information set in time t− 1. That is, by
construction ξjt is uncorrelated with kjt and ajt. (reason that g does not depend on
time - assumption on transition matrix)

• Now we can rewrite (18) as

yjt − βlljt = β0 + βkkjt + βaajt + ωjt + ηjt =

= β0 + βkkjt + βaajt + g(ωjt−1) + ξjt + ηjt =

= β0 + βkkjt + βaajt + g(φjt−1 − β0 − βkkjt−1 + βaajt−1) + ξjt + ηjt =

= βkkjt + βaajt + g̃(φjt−1 − βkkjt−1 + βaajt−1) + ξjt + ηjt

• Using β̂l and φ̂jt−1, and treating g̃ non-parametrically, we can estimate this equation
(i.e. with NLLS in case of polynomial approximation) using ξjt + ηjt as error term.

• Ackerberg et al. (2005) [3] propose to use GMM with a set of moments E(kjtξjt) = 0
and E(ajtξjt) = 0. They state that this produces lower variance compared with OP
approach.

• Wooldridge (2004) proposes using one-stage procedure with the following moments:

E

[
ηjt ⊗ f1(kjt, ajt, ijt, ljt)

(xijt + ηjt)⊗ f2(kjt, ajt, kjt−1, ajt−1, ijt−1)

]
= 0

with appropriate choice of f1 and f2.

2.2.2 Endogenous exit

• Now we relax the assumption that exit is exogenous.

• Remember that exit decision depends on

χjt =

{
1 if ωjt ≥ ω̄t(kjt, ajt)
0 otherwise

• Nothing change in the first stage (24): we found a proxy for ωjt, which takes care of
endogeneity.

• The second stage regression contains both ηjt and ξjt. Firms decision to exit depends
on ωjt, and ξjt is a component of ωjt.

• Rewrite the second stage regression as

E[yjt − βlljt|Ijt−1, χjt = 1] = β0 + βkkjt + βaajt + E[ωjt|Ijt−1, χjt = 1] (25)

where ηjt canceled out as it is orthogonal to Ijt−1 by construction. Also notice that
kjt and ajt are known at t− 1.
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• Given that ωjt is a Markovian process we can rewrite E[ωjt|Ijt−1, χjt = 1] as

E[ωjt|Ijt−1, χjt = 1] = g(ωjt−1, ω̄t(kjt, ajt)) (26)

• Once again, we do not know ω̄t(·), but we can model it non-parametrically. However,
this would not allow us to make any inference on β0, βk, βa.

• We can go another way and define the propensity score

Pr(χjt = 1|Ijt−1) = Pr(χjt = 1|ωjt−1, ω̄t(kjt, ajt)) = φ(ijt−1, kjt−1, ajt−1) = Pjt (27)

• (27) can be estimated non-parametrically, giving us P̂jt.

• Under some conditions we can invert (27) in terms of ω̄t(kjt, ajt):

ω̄t(kjt, ajt) = f(wjt−1, Pjt) (28)

• Rewriting (25) using the results in (26), (27) and (28) we get

E[yjt − βlljt|Ijt−1, χjt = 1] = β0 + βkkjt + βaajt + g(ωjt−1, f(wjt−1, Pjt)) =

= β0 + βkkjt + βaajt + g′(ωjt−1, Pjt) =

= β0 + βkkjt + βaajt + g′(φjt−1 − β0 − βkkjt−1 − βaajt−1, Pjt)

• That is, as before we can write

yjt − βlljt = β0 + βkkjt + βaajt + g′(φjt−1 − β0 − βkkjt−1 − βaajt−1, Pjt) + ζjt =

= βkkjt + βaajt + g̃(φjt−1 − βkkjt−1 − βaajt−1, Pjt) + ζjt

where we compress β0 into the non-parametric function g̃(·) as before.

• Substitute P̂jt, φ̂jt and β̂l and estimate it with NLLS, approximating g̃(·) either with
polynomial or with kernel function.

2.3 Levinsohn and Petrin

• What if we observe some periods with zero investment? Levinsohn and Petrin (2003)
[27] (LP) report more than 50% percent of firms with zero investment in their data
set.

• Model of OP allows to adjust for that: OP require investments to be strictly mono-
tonic only on the subset of data. That is, we can use the data with ijt > 0.

• This produce consistent results: conditioning on ijt > 0 does not have anything do
say about both ηjt and ζjt.

• However, for obvious reasons dropping 50% of the data is inefficient.

• LP propose an alternative estimation method for the case of zero investments: they
propose to use some other variables (not investments) to proxy for ωjt. They use
intermediate outputs (i.e. electricity, fuels, materials) which are rarely zero.
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• Rewrite (18) with additional input mjt (materials):

yjt = β0 + βkkjt + βlljt + βmmjt + ωjt + ηjt (29)

LP assume that mjt is a non-dynamic input which is determined by

mjt = mt(kjt, ωjt) (30)

Assume that mt is monotonic in ωjt (LP state conditions that are sufficient for this).

• Materials is a static choice, so parametric assumption can be imposed here

• Given this, we can proceed as in OP model. Start with inverting mt function:

ωjt = m−1t (kjt,mjt) (31)

Substitute (31) into (29):

yjt = β0 + βkkjt + βlljt + βmmjt +m−1t (kjt,mjt) + ηjt =

= βlljt + φt(kjt,mjt) + ηjt

Estimate βl and φjt, and proceed to the second stage where

ỹjt = βkkjt + βmmjt + g̃(φjt−1 − βkkjt−1 − βmmjt−1) + ξjt + ζjt (32)

where we use a nonparametric estimate for φjt from the first stage and non-parametrically
estimate g̃(·).

2.4 Collinearity issues

• Assumptions required by OP and LP models are quite restrictive.

• It turns out that even these assumptions hold, there might be some identification
issues.

• Ackerberg, Caves and Frazer (2006) (ACF) point to possible collinearity of ljt and
non-parametric function of kjt, ajt, ijt in the first stage (kjt,mjt in case of LP).

• Examine the case of LP : ljt and mjt are chosen simultaneously, perfectly variable,
non-dynamic inputs. It is intuitive to expect that they are decided in a similar way:

mjt = mt(ωjt, kjt) (33)

ljt = lt(ωjt, kjt) (34)

From the results in (30) we know that we can invert mj function in ωjt. Plug it into
lt instead of ωjt:

ljt = lt(m
−1
t (kjt,mjt), kjt) = g(mjt, kjt) (35)

We get that ljt is a function of mjt, kjt. But if we want to use non-parametric
identification on function of ωjt, kjt we would not be able to identify βl given that ljt
is a function of mjt, kjt.
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• The same problem holds for OP model.

• ACF discuss various additional assumption that make DGP such that βl can be
identified. They find two specifications for LP model: one relies on optimization
error in ljt but require no optimization error in mjt, other sets additional timing
assumptions and assumes another independent shock between time periods which
affects ljt is independent of everything else (see ACF, section 3.1). Both seem to be
quite unrealistic.

• For OP model there is a more plausible assumption:

– Assume that ljt is chosen between t − 1 and t (it is not perfect variable now).
Denote this point t− b, 0 < b < 1;

– Assume that ωjt is Markovian between subperiods t− 1, t− b, etc;

– Then
lit = lt(ωit−b, kjt)

which implies that ljt is not a function of ωjt;

– Now there is not necessarily collinearity as ljt is not a function of ωjt.

• This method would not work in case of LP as it requires ljt to be set after mjt

(otherwise ljt would enter a non-parametric equation and βl would not be identified
in the first stage.

2.5 ACF Procedure

• But is it necessary to identify βl in the first stage?

• ACF propose a procedure that does not estimate any coefficients in the first stage,
but only gets rid of ηjt.

• Assume the same structure as for OP correction procedure before:

– ljt is not perfectly variable and is chosen in t − b, 0 < b < 1, that is before
materials;

– ωjt is Markovian between sub-periods t− 1, t− b, etc.

• Now firm’s material inputs would be determined by

mjt = mt(ωjt, kjt, ljt) (36)

• as before, invert (36) and plug into the output function to get the first stage equation:

yjt = β0 + βkkjt + βlljt +m−1t (mjt, kjt, ljt) + ηjt (37)

βl is clearly not identified, but we get an estimate Φ̂jt of the term

Φjt(mjt, kjt, ljt) = β0 + βkkjt + βlljt +m−1t (mjt, kjt, ljt)

• ACF proceed the same way as LP, but two moment conditions are required as both
βl and βk should be estimated.
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• Decompose ωjt as before:

ωjt = E(ωjt|Iit−1) + ξjt = E(ωjt|ωjt−1) + ξjt = g(ωjt−1) + ξjt

• One set of moment conditions could be also used before (proposed by ACF for OP):

E(ξjt|kjt) = 0

• This would not hold for ljt as it is chosen after t− 1, so it might be correlated with
ξjt. However, ljt−1 was chosen in t− b− 1, and is in the information set Ijt−1. That
is, second set of moments can be

E(ξjt|ljt−1) = 0

• To recover ξjt we compute the implied ωjt(βk, βl):

ωjt(βk, βl) = Φ̂jt − βkkjt − βlljt

and non-parametrically regress ωjt(βk, βl) on ωjt−1(βk, βl). Residuals of the regres-
sion are the implied ξjt(βk, βl)

• Use sample analogue of the moments

1

T

1

N

∑
t

∑
i

ξjt(βk, βl)

(
kjt
ljt−1

)

• LP and OP use moments
E(ξjt|ljt−1) = 0

to test for the over-identifying restriction. This is different from what ACF do as OP
and LP do inference on βl in the first stage.

• Assumption is ACF can also be adjusted so that b = 1, so the second set of moment
conditions becomes

E(ξjt|ljt) = 0

• ACF also compare their procedure with dynamic panel models: ACF appears to
be more flexible regarding serially correlated transmitted error ωjt but less flexible
regarding non-transmitted error ηjt and fixed effect αj . Also, ACF requires additional
assumptions.

• Ackerberg et al. (2007) [2] discuss how one can relax scalar unobservable assumption.
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