Introduction to Delta Method in Econometrics

Alexey Khazanov

Lomonosov Moscow State University, Economics department; New Economic School

《曰》 《圖》 《臣》 《臣》 臣

900

Instead of Introduction

- What is Delta method used for? Asy distribution of ê → asy distribution of g(ê)
- What kind of theory is behind the Method? CLT, Slutsky (CMT), Taylor expansion
- What is the alternative? Bootstrap

References: B. Hansen's "Econometrics".

< 回 ト < 三 ト < 三 ト

1 Theoretical Background

2 Delta Method

3 Second-Order Delta Method

Theorem (Central Limit Theorem (CLT)) Let $\{z_n\}$ be IID with $\mathbb{E}[z_i] = \mu$ and $\mathbb{V}[z_i] = \sigma^2$. Then,

$$\sqrt{n}\left(\frac{1}{n}\sum z_i-\mu\right)\stackrel{d}{\rightarrow} N(0,\sigma^2),$$

as $n \to \infty$. Lindberg-Levy version of the theorem for IID obs.

Theorem (**Central Limit Theorem (CLT)**) Let $\{z_n\}$ be IID with $\mathbb{E}[z_i] = \mu$ and $\mathbb{V}[z_i] = \sigma^2$. Then, $\sqrt{n}\left(\frac{1}{n}\sum z_i - \mu\right) \xrightarrow{d} N(0, \sigma^2),$

as $n \to \infty$. Lindberg-Levy version of the theorem for IID obs.

Theorem (Continuous Mapping Theorem (CMT)) If $z_n \xrightarrow{d} z$ as $n \to \infty$ and $g : \mathbb{R}^m \to \mathbb{R}^k$ has the set of discontinuity points D_g such that $Pr(z \in D_G) = 0$, then $g(z_n) \xrightarrow{d} g(z)$ as $n \to \infty$

Theorem (Slutsky's Theorem)
If
$$z_n \stackrel{d}{\rightarrow} z$$
 and $c_n \stackrel{p}{\rightarrow} c$ as $n \rightarrow \infty$, then
1) $z_n + c_n \stackrel{d}{\rightarrow} z + c$
2) $z_n c_n \stackrel{d}{\rightarrow} zc$
3) $\frac{z_n}{c_n} \stackrel{d}{\rightarrow} \frac{z}{c}$ if $c \neq 0$

Theorem (Slutsky's Theorem)
If
$$z_n \stackrel{d}{\rightarrow} z$$
 and $c_n \stackrel{p}{\rightarrow} c$ as $n \rightarrow \infty$, then
1 $z_n + c_n \stackrel{d}{\rightarrow} z + c$
2 $z_n c_n \stackrel{d}{\rightarrow} zc$
3 $\frac{z_n}{c_n} \stackrel{d}{\rightarrow} \frac{z}{c}$ if $c \neq 0$

Taylor's expansion

Assume g(x) is continuous and twice differentiable for any $x \in X$. Then, for some $x_0 \in X$

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + \frac{1}{2!}g''(x_0)(x - x_0)^2 + o(x^2)$$

イロト イボト イヨト イヨト

1) Theoretical Background

3 Second-Order Delta Method

Deriving Univariate Delta method

Let $\sqrt{n}(\hat{\mu} - \mu) \stackrel{d}{\rightarrow} \xi$. What is the asymptotic distribution of $g(\hat{\mu})$? (1) Apply Taylor Expansion at μ

$$g(\hat{\mu})=g(\mu)+g'(\mu)(\mu-\mu)+o(\hat{\mu})$$

② Re-arrange the terms

$$g(\hat{\mu}) - g(\mu) = g'(\mu)(\mu - \mu) + o(\hat{\mu})$$
$$\sqrt{n} (g(\hat{\mu}) - g(\mu)) = g'(\mu)\sqrt{n}(\mu - \mu) + \sqrt{n}o(\hat{\mu})$$
$$(3) Use \sqrt{n}(\hat{\mu} - \mu) \xrightarrow{d} \xi \text{ Then,}$$

$$\sqrt{n} (g(\hat{\mu}) - g(\mu)) \stackrel{d}{\rightarrow} g'(\mu) \xi$$

Assume $\xi \sim N(0, \sigma^2)$. Then,

$$\sqrt{n}\left(g(\hat{\mu}) - g(\mu)\right) \xrightarrow{d} N(0, \left(g'(\mu)\right)^2 \sigma^2)$$

Multivariate Delta Method

Theorem (Delta Method)

If $\sqrt{n}(\hat{\mu} - \mu) \xrightarrow{d} \xi$, where g(u) is continuously differentiable in a neighborhood of μ then as $n \to \infty$

$$\sqrt{n} \left(g(\hat{\mu}) - g(\mu) \right) \stackrel{d}{\rightarrow} G' \xi,$$

where $G(u) = \frac{\partial}{\partial u}g(u)'$ and $G = G(\mu)$. In particular, if $\xi \sim N(0, V)$, then as $n \to \infty$

$$\sqrt{n} \left(g(\hat{\mu}) - g(\mu) \right) \stackrel{d}{\rightarrow} N(0, G' V G)$$

イロト イポト イヨト イヨト 二日

Multivariate Delta Method

Theorem (Delta Method (short))

If $\sqrt{n}(\hat{\mu} - \mu) \stackrel{d}{\rightarrow} N(0, V)$, then $\sqrt{n} (g(\hat{\mu}) - g(\mu)) \stackrel{d}{\rightarrow} N(0, G'VG)$ where $G(u) = \frac{\partial}{\partial u}g(u)'$ and $G = G(\mu)$.

Examples

For all examples from the regression analysis assume OLS post-estimation results under IID assumption about the error term.

- (1) $\hat{\mu}$ is some unbiased estimate for μ population mean. Find asymptotic distribution for $log(\hat{\mu})$ and $exp(\hat{\mu})$
- ② Find confidence interval for the top of the parabola estimate.
- 3 $\hat{\mu}$ is some unbiased estimate for μ population mean. Find asymptotic distribution for $\hat{\mu}^2$ if $\mu = 0$

イロト イボト イヨト イヨト 二日

1) Theoretical Background

2 Delta Method

Second-Order Delta Method

Theorem (Second-Order Delta Method)

If $\sqrt{n}(\hat{\mu} - \mu) \xrightarrow{d} N(0, \sigma^2)$, where g(u) is continuously differentiable in a neighborhood of μ , and $g'(\mu) = 0$ and if $g''(\mu) \neq 0$ then as $n \to \infty$

$$n(g(\hat{\mu}) - g(\mu)) \xrightarrow{d} \sigma^2 \frac{g''(\mu)}{2} \chi_1^2$$

Now, consider the previous example.

 $\hat{\mu}$ is some unbiased estimate for μ – population mean. Find asymptotic distribution for $\hat{\mu}^2$ if $\mu = 0$.

イロト イポト イヨト イヨト

1) Theoretical Background

2 Delta Method

3 Second-Order Delta Method

- In Statistics
- In Econometrics
- Bootstrap vs. Delta Method

The _Thank_you_ slide