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Whether one buys may be determined in part by how many others have. When the correlation 
is positive we refer to 'bandwagon' effects, and when negative, 'reverse bandwagons'. We 
construct demand schedules in the presence of such effects and, with simple assumptions about 
supply, investigate the existence of and approach to equilibrium. Stable price-quantity equilibria 
exist, but for many plausible parameter values, equilibria are asymptotically unstable, and 
system trajectories consist of cycles that can move, with slight parameter changes, via successive 
bifurcations into what has been called 'chaotic' dynamics, essentially indistinguishable from 
random noise. These conditions occur despite assumptions of perfect information, profit 
maximizing firms and utility maximizing individuals. 

1. Introduction 

Despite such notable exceptions as Veblen (1899), Duesenberry (1949) and 
Leibenstein (1950, 1976), interpersonal effects on consumer demand are rarely 
explicitly analyzed. The present paper concerns the impact on markets of a 
common interpersonal effect: that whether one buys a good depends on the 
number of previous buyers. We construct demand schedules resulting from 
this effect and consider some peculiarities in how supply and demand are 
then matched, and the implication for attainment of equilibrium price/quan- 
tity combinations. Our underlying assumptions are similar to Leibenstein's 
(1976) but the model differs. His analysis is static, and assumes that (p. 56) 
'buyers have accurate knowledge of market conditions (of the total quantities 
demanded at every price)'. We consider dynamics explicitly, and require 
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Harvard University, and the work was supported in part by a John Simon Guggenheim 
Memorial Foundation Fellowship and by National Science Foundation Grant no. SPI 81-65055, 
both to the first author. 
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buyers to know only the volume purchased in the previous time period. The 
analysis is based on a general argument previously put forward as 'threshold 
models of collective behavior' [Granovetter (1978), Granovetter and Soong 
(1983)]. 

The interpersonal effects analyzed here are of two kinds. In the first, 
'bandwagon effects' [cf. Leibenstein (1976)I the correlation between one's 
purchases and those of others is positive. This may occur because the utility 
of a good is directly enhanced by the number of others consuming it. There 
are three distinct reasons for such enhancement. One has to do with status- 
seeking, when people (p. 51) 'purchase a commodity in order to get into the 
"swim of things", in order to conform with those they wish to be associated 
with or in order to be fashionable or stylish'. A second is that some goods 
may depend for their utility on joint consumption by others. Eating in an 
empty restaurant is depressing; restaurants with windows facing the street fill 
visible tables first, to convey to passersby a convivial atmosphere. A third 
direct effect on utility results when services or accessories for one's purchase 
are more readily and cheaply available the more others have purchased - as 
is well understood by those seeking warranty service for their 'off-brand' 
appliance or software for their unknown brand of personal computer. 

Bandwagon effects may also occur because the number of previous 
purchasers is taken as a signal of product quality. Philip Nelson's (1970) 
distinction between 'search' and 'experience' goods is relevant, the latter 
being goods whose characteristics can only be known after use; in practice, 
however, one often relies on others' experiences as a screening device. The 
number of diners in a restaurant may be taken not only as a sign of 
conviviality, but also as a commentary on the quality of food. When buying 
new or unfamiliar products - as with first-time parents facing the market for 
disposable diapers - the number of others using a brand may be a large 
influence on purchases. The value of such screening is enhanced when a 
market is complexly differentiated and sufficient experience with all alterna- 
tives to make optimal judgements would be time-consuming and expensive, 
as with personal computers. 

The opposite of a bandwagon effect occurs if the correlation between one's 
consumption and that of others is negative. These 'reverse bandwagons' have 
causes closely paralleling those already cited. Status-seeking may require 
avoidance of overly popular products: Leibenstein (1976) refers to 'snob 
effects'. Products such as clothing, cosmetics and works of art, where high 
style and panache are essential, are especially implicated. Enjoyment may be 
directly reduced as the number of other consumers increases. Empty res- 
taurants or parks may be uninviting, but so are those that are jam-packed. 
While services and accessories may be scarce when purchases of a product 
are too few, they may also be unavailable or delayed when they are too 
many. Signaling interpretations seem less likely here than for forward 
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bandwagons, as they imply a judgement that the more purchasers of a 
product, the lower its quality; an example is the 'contrarian' position in 
financial markets. 

The same commodity may be subject both to bandwagon effects and their 
reverse, over different ranges of consumption volume. Restaurants, for 
example, appeared in discussions of both, and there may be many products 
that people are unwilling to purchase until some minimum number of others 
has, but that also becomes less appealing once some maximum number is 
exceeded. 

2. Threshold models of consumer behavior 

Begin with forward bandwagons. Assume that in each time period, a 
consumer must decide whether or not to purchase one unit of a given 
commodity, so that the number of purchasers equals the number of units 
purchased. 1 For a fixed product price assume that each person is influenced 
by what proportion of some relevant group of others have bought the 
product, but that different people are influenced in different degrees. Charac- 
terize a person who will buy only after he sees 50% of others do so as having 
a 'threshold' of 50%, and assume that once one's threshold is surpassed, he 
will purchase and continue to do so in each subsequent time period. We can 
depict the distribution of such thresholds as a probability density, f(x), 
which we assume continuous. 

Suppose the proportion who have purchased the product in a given period 
is r(t). Purchasers at ( t+  1) are just those whose threshold is less than or 
equal to r, and their proportion can be found by integrating the density, 
f(x), to yield a cumulative distribution function (c.d.f.), F(x). It follows that 

r(t+ 1) =F(r(t)). (1) 

At equilibrium we have r(t)=F(r(t)), so that a graph of F against r will 
display all equilibria as intersections of the curve with the 45 ° line, as for the 
three equilibria in fig. 1. 

For an equilibrium, re, to be asymptotically stable, we require from 
standard linearization techniques that F'(re)=f(re)< 1. Geometrically this 
means that stable equilibria occur where F cuts the 45 ° line from above. 
Now consider reverse bandwagon effects. Assume for each individual not 

1Some loss of generality results from the restriction to one unit, but many commodities fit, 
e.g., those whose use is steady and limited within each time period (such as laundry detergent) 
and those that are a flow of services that one either has or does not (such as cable TV, a 
restaurant meal, a chauffeur). For many durables, high expense or rapidly diminishing marginal 
utility beyond the first unit help limit purchases to one per period, as with autos, dishwashers 
and solar collectors. We neglect the time distribution of product failure as a determinant of 
durable goods purchases, and for non-durables we neglect stockpiling. 

J.I-~B.O.- F 
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Fig. 1. F(x): Cumulative distribution function of thresholds. 

only a threshold beyond which he will buy, but also a different kind of 
threshold, greater than the first, beyond which he will stop buying. One may 
need to see 20~o of one's friends with push-button phones before succumbing 
to modem technology, but when 90~ have them, the old rotary dial may 
develop perverse attractions. 

The distributions of lower thresholds, fL, and of upper thresholds, fu, are 
the marginal densities of a joint density function of lower and upper 
thresholds, fL, u, whose c.d.f, is FL. U. This f has the obvious restriction that 
for each individual the lower threshold must be less than the upper, so that 
the bivariate density is defined not over the unit square but only over its 
upper left triangle. Integrations of the marginal densities gives F L and Fu, the 
c.d.f.s of lower and upper thresholds, respectively. 2 

Suppose that at time t, 45~  of men buy narrow ties, and 60~o have lower 
thresholds for such purchases of less than or equal to 45~,  and 25~  have 
such upper thresholds. This 25~  must be a subset of the 60~,  since one's 
lower threshold is less than one's upper; thus, at ( t+ 1) this subset will be 
deactivated, leaving only the balance, 35~, to buy narrow ties. Buyers at 

2For simplicity we depict situations where all individuals have a lower and upper threshold. 
But some individuals may not purchase regardless of how many others do so. We assign them a 
lower threshold of 100%: they buy only when everyone - including themselves - has bought, i.e., 
they will not buy. Since the behavior of such individuals is constant it does not enter the formal 
dynamic analysis. If there are others who will not stop buying no matter how many others buy, 
there is no upper threshold number to assign them and this shifts the formalities: Fu is no longer 
a distribution function since Fu(1)<l ,  and then G(1)>0 rather than = 0  as in fig. 2. This shift 
does not affect our subsequent analysis. An alternate account that assigns numerical description 
to every individual associates with each a band of values, [li, ui]: one buys iff the fraction of 
buyers in the previous period is contained in the band. Those without upper thresholds have 
band [li, 1], those with lower thresholds of 100%, l-l, 1-]. 'Contrarians', who buy iff no one else 
did, have band [0,0-]; 'instigators', who buy first, but stop after some level of others' buying, 
have I0,uJ; and the impervious, who buy under all conditions, regardless of what others do, 
have I-0, 11. 
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( t+ 1) are just those whose lower but not yet their upper threshold has 
been exceeded - exactly the difference between the two c.d.f.'s. Thus 

r(t + 1) = G(r(t))= FL(r( t ) ) -  Fu(r(t)). (2) 

Note that with the substitution of G for F, this is formally identical to eq. (1), 
so stability analysis is also the same, with asymptotic stability iff G'(re) lies 
between - 1  and + 1. Fig. 2 indicates that G, being a difference between two 
c.d.f.'s, need not be monotonic. It may be instead, for example, single-peaked. 

G (x) (x) : x 

OIL ..~ 
0 x I 

Fig. 2. G(x): The difference between two cumulativlb iiistribution functions, FL(x), the c.d.f, of 
lower thresholds, and Fu(x), the c.d.f, of upper thresholds. 

3. Demand schedules for bandwagon effects 

To construct demand schedules requires some systematic relation between 
prices and thresholds. Thus far we have fixed prices, but thresholds may be 
expected to change when prices do. When personal computers were astro- 
nomically expensive, it is likely that people were influenced by the purchases 
of others, but with very high thresholds. At lower prices the previously 
insensitive were willing to buy when a much smaller number of others than 
before did so. For a given product, assume a different threshold distribution 
for each possible price, and, except for boundary constraints, a monotonic 
relation between price changes and those in thresholds - i.e., all individuals 
have lower thresholds at lower prices and the difference in thresholds is 
greater the greater that in price. A family of c.d.f.'s results, as in fig. 3, each 
keyed to a particular price, with prices declining from southeast to north- 
west, so Po > P1, etc. Monotonicity guarantees that each c.d.f, that represents 
thresholds for a lower price than another will lie strictly above it (except at 
unity where all c.d.f.'s must converge). As with indifference maps, then, 
between any pair of curves lie an infinite number of additional ones, each 
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Fig. 3. Cumulative distribution functions of thresholds displayed for various product prices. 
Note that Po > P1 > P2, etc. 

corresponding to some minute gradation in price; a curve is then a cross- 
section of the surface representing the function F(x,p), where Fx>O and 
Fp<0.  

Assume for now a perfectly elastic supply of goods, so that any price 
changes will be exogeneous. For price p, intersections of the corresponding 
threshold distribution with the 45 ° line are equilibrium quantities purchased 
at that price, and so are logical candidates for points on a demand schedule. 
But demand at some prices may then not be determinate, since there can be 
multiple equilibria, as between price Po and Ps in fig. 3. a One way to assess 
which equilibrium number of purchases would be made at price p is to 
suppose that the product is new so that initial purchases are zero. It is then 
plausible that the system will proceed to the smallest stable equilibrium. 
Since stable equilibria are those that cut the 45 ° line from above, and the 
equilibrium number of purchasers has been equated by hypothesis to the 
quantity purchased, we may graph in fig. 4 a demand schedule from the 
surface, F, implied in fig. 3. In this schedule, demand is everywhere 
determinate, but there is a sharp discontinuity. At price Po or higher, sales 
are zero because, at these prices, there are no zero threshold individuals - 
who buy even when no others do so - and so zero purchases is the only 
stable equilibrium. Between prices Po and Ps is a typical, downward-sloping 
demand curve. The amount sold increases gradually as prices decline, 

3The curves in fig. 3 have the qualitative features of cubic c.dZs, corresponding to quadratic 
threshold probability densities: most thresholds are moderate, tailing off to smaller numbers of 
low and high values. Granovetter and Soong (1983,1984) show that a wide class of parameteriza- 
tions for such second-order polynomial densities leads to these multiple intersections. 



M. Granovetter and R. Soong, Threshold models of consumer demand 

Price P5 

89 

o I 
0 Q5 N 

Quantity 

Fig. 4. A demand schedule corresponding to the threshold distributions of fig. 3, and the 
assumption that the minimum stable equilibrium of c.d.f.s in fig. 3 represents quantity purchased. 

following the lower intersection of the c.d.f.'s up the 45 ° line in fig. 3, until 
price Ps, where the c.d.f, lies tangent to that line. Any further decline in price 
then results immediately in a large increase in sales to N, the population size, 
as the lower intersection of the c.d.f, with the 45 ° line is lost and unity is the 
only stable equilibrium. 4 Quantities between Qs and N will not be sold at 
any price. 

If we drop the condition of a new product (zero initial purchases) we must 
draw a more general demand curve with all stable and unstable equilibria. It 
is geometrically clear in fig. 3 that as prices decline, the location of stable 
equilibria (those cutting the 45 ° line from above) will move higher; thus, 
except for boundary constraints, stable equilibria will yield standard, 
downward-sloping demand-schedule segments. Conversely, unstable equilib- 
ria, (those cutting the line from below) must produce upward-sloping 
segments. Since we would not expect to observe unstable equilibria in 
practice - they repel any nearby trajectory - this poses no contradiction to 
the usual patterns of demand. But graphing all points together, stable 
equilibria in solid lines and unstable in dotted, as in fig. 5, shows more 
complex discontinuities than in fig. 4. For prices between P0 and P5 we have 
the stable equilibrium shown in fig. 4 and also another at N, separated from 
the first set by unstable equilibria. At P4, for example, the initial ('new 
product') equilibrium is Q4. But if some perturbation, such as confusion 
about how many other buyers there were, pushed the quantity sold beyond 
the unstable equilibrium Qu, the amount sold would move up to the second 
stable equilibrium of N, whose global stability is greater than that of Q4. An 
industry aware of this might offer a brief price reduction calculated to push 

4The tangency point occurs at a double root of the cubic, and curves beyond are those where 
two of the three solutions have shifted from real to imaginary. 
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Fig. 5. A demand schedule corresponding to the the threshold distributions in fig. 3, showing 
stable equilibria in solid lines, unstable in dotted. 

consumption beyond the unstable equilibrium, knowing that the price could 
then be restored to P4 - or even pushed up almost to Po - without any loss 
of the new sales level, N. s 

Figs. 4 and 5 are drawn to correspond to the quadratic densities and cubic 
c.d.f.'s of fig. 3. If threshold distributions were such that only a single 
equilibrium obtained over the whole range of price changes, the resulting 
demand curve would be conventional; ff the distributions were characterized 
instead by a series of hills and valleys, corresponding demand schedules 
would have more discontinuities and separable regions. Thus, a number of 
qualitatively different demand situations are consistent with bandwagon 
effects, depending on the exact details of interdependencies. 

4. Mixtures of bandwagon and reverse bandwagon effects 

We now treat mixtures of forward and reverse bandwagons, noting that 
the pure reverse bandwagon is a limiting case of a mixture, viz. where all 
bandwagon (loWer) thresholds are 0 or 100% - prices may affect the initial 
buying decision but the behavior of others does not. Mixtures can be. 
analyzed with the combination of lower and upper thresholds described by 
eq. (2). 

Assume again that lower thresholds change in the same direction as prices; 
the opposite assumption seems apt for upper thresholds. Imagine that, at the 
prevailing price, you would end your subscription to cable TV when 90% of 
your friends had subscribed. If rates are cut, this 'snob' behavior will seem 

5Note, however, that at prices near Po, risks increase since the unstable middle equilibrium is 
closer than at P ,  and even small perturbations may propel the system to the lower stable 
equilibrium that is near zero. 
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less compelling; your upper threshold may move to 95%. But if rates 
increase, the prospect of gaining status by abandoning the living room for 
plays and concerts may seem alluring when only 80% of others sit mesme- 
rized by their home box office. 6 

To suppose that increases in price raise lower thresholds and depress 
upper ones, and that price decreases depress lower thresholds and raise 
upper ones has some face validity since all these changes make purchases 
move inversely to price changes. We again assume a monotonic relation 
between the size of price changes and those of thresholds. 

These assumptions imply that an increase in price narrows the distance 
between upper and lower threshold distributions and a decrease widens it. In 
terms of c.d.f.'s, ~FL/3P < 0 and ~Fu/ap > 0. Fig. 6a shows the upper and lower 
c.d.f.'s for two prices, P0 and P1, where Po is the larger, as before; the 
corresponding difference functions, Go and G1 are displayed in fig. 6b. As 
with the map of fig. 3, for pure bandwagon effects, an infinitely dense map of 
such difference curves can be assumed, where each curve corresponds to a 
fixed commodity price. Declines in price both steepen the G curve and 
increase the point of intersection with the 45 ° line. This may at first appear 
to yield simply the standard downward-sloping demand schedule. But if G 
intersects the line with slope of absolute value greater than unity, the 
indicated equilibrium is unstable, repelling all nearby trajectories, and would 
thus not be observed. 

This situation did not arise in pure bandwagon effects since F L is a 
distribution function, monotonically increasing; any crossing of the 45 ° line 

a 
I 

F(x) 

O0 t 

Fig. 6a. Cumulative distribution functions for lower and upper thresholds, shown for two prices, 
represented by superscripts 0 and 1. Note that price 0 is greater than price 1. 

6We assume the absence of 'money illusion' - valuation of goods in part because of their cost, 
independent of utility conferred. In particular, if "Veblen effects' ELeibenstein (1976, pp. 62-63)] 
are present, where people want expensive commodities for 'conspicuous consumption', then the 
effects of a price increase on upper thresholds are ambiguous since it makes the product more 
attractive. 
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Fig. 6b. Two difference functions, G(x), representing the differences between lower and upper 
c.d~.s shown in fig. 6a. Go is the difference between F ° and F °, and similarly for G~. 

from above has slope less than unity and is then stable, with at least one 
such crossing guaranteed. But the functions G are differences of distribution 
functions, and no such guarantees obtain. Where the sole intersection of G 
with the line has slope greater than unity, as for G1 in fig. 6b, there is no 
stable equilibrium, and the system enters an oscillatory mode..Where the 
slope first exceeds unity, the single equilibrium bifurcates into an oscillation 
of period two about the now unstable equilibrium, and the system cycles 
back and forth between these two values. This oscillation is asymptotically 
stable: if pushed away from either value, the system returns to this 
oscillation. As the slope steepens, the outcome bifurcates from stable 
oscillation among two values to that among four, then eight, sixteen, etc., 
until a 'critical' steepness is reached, beyond which lies what has been called 
the 'chaotic' region. There, depending on the details of G, one finds either 
stable cycles of any period (not necessarily exponents of 2) or completely 
aperiodic ('chaotic') behavior of the system [see May (1976), May and Oster 
(1976)]. 

Within the chaotic region, May indicates that for many 'smooth and 
"'sensible" functions.., for any specified parameter value there is one unique 
cycle that is stable and that attracts essentially all initial points' [May (1976, 
p. 462)]. That is, the measure of chaotic trajectories can be zero. But this is 
not necessarily the case for all relevant functions: Day and Shafer (1985), for 
example, use a piecewise function in Keynesian dynamics to show that the 
chaotic set may, under fairly simple assumptions, not only have nonzero 
measure but even dominate outcomes. [For other illustrations of chaotic 
dynamics in economic contexts see Day (1982 and 1983) and Benhabib and 
Day (1981)]. But even if chaotic trajectories did have measure zero, most 
cycles in that region would have a large period, 'and moreover it will 
typically take many thousands of generations before the transients associated 
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with the initial conditions are damped out' [May (1976, p. 464)]. It is then 
'essentially irrelevant whether the solution is aperiodic or periodic with long 
period; these are likely to be indistinguishable in practice, and small 
fluctuations in [steepness of slope] or in data collected are likely to blur the 
distinction, even if it did exist.' [May and Oster (1976, p. 595)]. 

In fig. 7a we construct a demand schedule by plotting against each price 
all equilibrium amounts of the good purchased at that price, assuming again 
a perfectly elastic supply of goods. For prices higher than P1, where the G 
curve first crosses with slope steeper than minus one, the curve has the 
standard shape. As the price declines below P1, the stable solution Qs 
bifurcates into two solutions, and the system oscillates back and forth 
between those. (The standard demand schedule diagram indicates such 
dynamics poorly; fig. 7b shows, for various prices corresponding to fig. 7a, 
exact time trajectories of quantity demanded at equilibrium.) At points near 
P1, the oscillation is hardly noticeable as both points are quite near Q,, but 
as price declines further the two move further apart until there is still 
another bifurcation. In such systems, the parameter windows - here, price 
reductions - required to yield successive bifurcations become increasingly 
smaller until a critical point, P*, is reached, beyond which bifurcations halt 
and the chaotic region described above is entered [May (1976)]. Thus, 
quantities sold at these prices would fluctuate in unpredictable ways even 
though the underlying assumptions are completely deterministic. 7 

The curves in figs. 6 and 7 depict unimodal difference functions, G, that 
cross the 45 ° line with sufficiently steep slopes to throw the system into the 
chaotic region. If underlying thresholds were such that slopes never exceeded 
unity, resulting demand curves would be conventional. If the Gs were 
multimodal, analysis would be correspondingly more complex, given the 
possibility of multiple intersections of G with the 45 ° line. As with pure 
(forward) bandwagon effects, a variety of situations is possible depending on 
the exact details of interdependencies. 

5. Models with supply response 

For long-run dynamics it is not too troublesome to assume a perfectly 
elastic supply of goods; but the responses of consumers to the purchases of 
others, that generate equilibrium levels of demand in this model, occur in the 
short run. Specifically, we have argued that when r(t) individuals buy at time 
t, F(r(t)) will do so at the same price at time ( t+  1). For this price to remain 

7Note that at each bifurcation point, solutions are shifted from solid to dotted lines, since at 
all lower prices these continue to be equilibrium solutions or cycles, but are unstable. 
Bifurcations beyond 2 ~ solutions are not shown on the diagram, as the increasing narrowness of 
parameter windows, which approach zero in size as price approaches P*, cannot readily be 
represented. 



94 M. Granovetter and R. Soong, Threshold models of consumer demand 

Price 

Ps 

P1 
P2 
P3 
P4 
p* 

PC 

a 

% 

I 
QI 

Quantity 

%. 
%%% 

Fig. 7a. A demand schedule corresponding to the family of G curves implicit in fig. 6b, where 
both bandwagon and reverse bandwagon effects are present. Stable equilibria and cycles are 

shown in solid lines, unstable in dotted. 
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Fig. 7b. The time path of consumer demand at equilibrium, for various prices indicated in 
fig. 7a. 

unchanged does require perfectly elastic supply since if F(r(t)) units were 
more or less than what was available at the prevailing price, excess supply or 
demand would exert pressure on that price. But a price change, by 
hypothesis, would throw consumers onto a different threshold distribution, 
requiring more complex dynamic assumptions. 
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Our treatment of supply is schematic; we merely allow any non-horizontal 
supply schedule. 8 Begin with forward bandwagons, and assume some supply 
function S(p(t)). Since the r(t+ 1)=F(r(t)) units that consumers want to buy 
at ( t+ 1) may be more than what is supplied at p(t) it represents not actual 
purchases, as above, but rather demand. We thus relabel the parameter r(t) as 
D(t). If D(t)> S(p(t)) we have excess demand and can expect a higher price in 
the next time period, shifting consumers to a lower threshold curve in the 
family depicted by fig. 3, and conversely for D<S. This requires a new 
parameter and equation in the model, to represent price movements 

p(t + 1)= p(t) + HEO(t)- S(p(t))]. (3) 

The argument of H is excess demand or supply at time t, and we assume 
H(0) =0. Note that this equation is a discrete-time analogue of the price- 
adjustment equation suggested by Samuelson (1947, p. 263). 

The assumptions about demand are unchanged from the model with 
perfectly elastic supply, but we rewrite eq. (1) with r relabeled as D and with 
its dependence on price made explicit 

D(t + 1)= F[p(t + 1), D(t)] = F{p(t) + H[D(t)--S(p(t))],D(t)}. (4) 

That is, price in the next period is determined by current price and current 
excess supply or demand; demand in the next period is determined by 
consumers' responses to current demand and by price in the next period. 
Since the next period's price is entirely determined by current price, demand 
and supply, eq. (3) can be substituted into eq. (4) as shown, and all 
arguments of the r.h.s, of (4) are in t, yielding a system of two coupled, first- 
order difference equations. 

The account seems intuitively plausible. In deciding on current price, 
suppliers have little to go on but the level of excess demand or supply in the 
previous period. Consumers are sensitive to current price but cannot see 
current demand any better than suppliers can since they are in the process of 
producing it by their separate decisions; they thus respond to the previous 
level of demand, each according to his threshold. 

Each equation generates one equilibrium condition. The first is that supply 
equal demand, the second that D(t+ 1)=D(t)=F(D(t)). Note that the de- 
mand curve already drawn in fig. 5 is exactly the locus of all points satisfying 
the second condition. When a supply curve is drawn in, then, any intersec- 
tion of that curve with the demand curve will satisfy both conditions; the set 
of such intersections must then be the set of all equilibrium points for the 

8A fully symmetric treatment would allow bandwagons for supply as well as for demand. In 
the game-theoretic literature on oligopoly and in some sociological treatments [White (1981)], 
suppliers' decisions are keyed to one another's. But we abstract away from such effects here. 
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two-equation system. In this respect, the introduction of inelastic supply has 
not altered the earlier analysis. 

But the stability of equilibria need not carry over to the extended model. 
We proceed by linearizing the system of eqs. (3) and (4). The matrix of first 
partial derivatives, evaluated at some equilibrium (p, D), where Fp and F D are 
the relevant partial derivatives of F, evaluated at (p, D), is 

1--H'(O)S'(p) H'(O) ] 

Fp-FrH'(O)S'(p ) Fv/-/'(O) + FDJ" 

For asymptotic stability both eigenvalues must have absolute value less than 
unity. Setting the determinant of the matrix to zero yields the following 
characteristic equation: 

O=L 2 + L [ - 1  +H'(O)S'(p)-Ffl'I'(O)-FD]+[Fa-FaH'(O)S'(P)]. (5) 

Note that this is in the form OfaL2+bL+c and that a-1 .  There is no 
obvious way to factor (5), and rather than derive cumbersome general 
expressions from the quadratic formula, we note that both eigenvalues are 
less than unity iff the following three conditions, expressed in terms of the 
quadratic coefficients, are met: 9 

(~ - l < c <  +1, (~  - l < b + c ,  ( ~ ) - l < c - b .  

Graphing these conditions together in fig. 8, we see that the region of 
stability is given by the cross-hatched triangle. 

Condition (ii) is equivalent to H'(O)[S'(p)(1-Fv)-Fp]>O. Since the 
forward bandwagon is monotonically increasing, Fo is always positive; Fp is 
negative since an increase in price moves consumers to a lower cumulative 
threshold distribution. Then if H'(O) is positive - reasonable for many price- 
adjustment functions 1° - and S'(p) is positive - the supply curve slopes up at 

9These conditions are derived as follows: (i) From the characteristic eq. (5) we seek solutions 
LI and L2 such that O=L2+bL+cf(L--LI)(L-L2). Multiplying out yields L2+(-Lx-L2)L+ 
LIL 2. Thus the product of the roots equals the coefficient c, and it is necessary but not 
sufficient for stability that c have absolute value less than unity; otherwise one eigenvalue must 
be greater than or equal to unity. (ii) We require further that the larger root be less than + 1 
and the smaller greater than - 1 .  The first of these conditions is that [-b+(b2-4c)l/2]/2<l, so 
(b2-4c)X/2<2+b. Squaring both sides, the condition is equivalent to - l < b + c .  (iii) For the 
smaller eigenvalue we require that - l<[-b-(b2-4c)l /2]/2,  that is, b-2<-(b2-4c)  t/2. 
Squaring this inequality yields - 1  <c-b.  The two eigenvalues may be either both real or both 
complex. If the latter, they occur in conjugate pairs and thus both have the same absolute value; 
then any pair that meets one of conditions (ii) and (iii) must also meet the other. 

1°It is also plausible for a price-adjustment function that H'(0)=0, as where the size of the 
adjustment declines more rapidly as excess supply or demand becomes smaller. An example 
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i J 
~ b  

-2  2 

Fig. 8. Cross-hatched triangle represents values of the quadratic coefficients, b and c, such that 
both eigenvalues have absolute value less than unity, and the system is stable. Note that b= 

(-- 1 + H'(O)S'(P) -Fptt '(O)- Fv)) and c= F v -  FvH'(O)S'(p). 

the equilibrium price - then this condition is met if FD< 1. That is, this 
stability condition is always met when the threshold curve corresponding to 
price p crosses the 45 ° line from above, at the equilibrium value D. Note that 
the locus of all such crossings is just that given in fig. 5 by solid lines. 

To sum up: the demand curve is unchanged when inelastic demand is 
introduced, being the locus of all points that depict demand for a given 
equilibrium price. There is a parameter region within which the price- 
quantity equilibria resulting from the system of eqs. (3) and (4) are 
asymptotically stable. As with perfectly elastic supply, we may have multiple 
equilibria, as can be seen by drawing upward-sloping supply curves through 
the demand curve of fig. 5. Because stability now depends on the value of 
four separate derivatives (Fd, Fp, S' and H'), we cannot determine it from 
inspection of the supply-demand cross. Some of the equilibria that were 
unstable under perfectly elastic supply (whose locus is given by dotted lines 
in fig. 5) may be stable in the extended system; conversely, some stable 
equilibria (solid fines in fig. 5) may now be unstable. These latter cross the 
45 ° line with slope less than unity; but this now guarantees only that one 
eigenvalue is less than +1. The second could still be less than - 1 ,  
destabilizing the system. Moreover, systems of nonlinear equations are much 
more prone to fall into cycles, or regions with chaotic dynamics, than are 

would be H(x)=x 3. But if H'(O)=O, the two eigenvalues are F o and 1. The latter eigenvalue is a 
boundary case and renders the linearized stability analysis unfformative; more detailed analysis 
of the particular equations would then be required to determine the stability properties of an 
equilibrium. 
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single such equations [Kaplan and Yorke (1979), Marotto (1978)], and some 
parameterizations might yield this confusing dynamic behavior even in the 
absence of upper thresholds. This possibility was excluded for forward 
bandwagons with perfectly elastic supply because the single difference 
equation (1) was monotonically increasing, with no possibility of the 'tunable 
hump' required for chaotic dynamics [May (1976)]. Finally, even the move 
from one to two dimenions alters the conclusion that chaotic trajectories 
have zero measure for many analytical functions, and reduces the level of 
nonlinearity required for such phenomena to occur [May (1976, p. 466)]. Fig. 
5 must then be only a partial picture of system outcomes, since there may 
also be stable cycles and aperiodic behavior. 

Mixtures of forward and reverse bandwagons can also be analysed with 
eqs. (3) and (4), everywhere substituting G for F, where G remains the 
difference between lower and upper cumulative distributions. Since any 
equilibrium must then satisfy D(t+ 1)=D(t)= G(D(t)), the downward sloping 
line of fig. 7a's demand curve continues to be the locus of all possible 
equilibria that occur at a point in the state space, rather than in a cycle. But 
the solid and dotted lines no longer indicate which equilibria are stable, and 
the situation is less clear than for pure forward bandwagons since GD may be 
positive or negative, unlike FD which - being the slope of a c.d.f. - must be 
positive. The system may then be in stable equilibrium, oscillate in stable 
cycles or enter aperiodic, 'chaotic' trajectories. If cycles occur they have no 
necessary relation to those shown in figs. 7a and 7b, since the latter are 
cycles of demand only; in the two-equation system, cycles involve changes in 
each period of both demand and price. 

6. Summary 

The models in this paper illustrate the implications of some simple 
assumptions about interpersonal effects on consumption where buying de- 
pends in part on how many others have previously bought. Rather than 
examine utility functions directly, we make assumptions about individual 
differences in sensitivity to others' behavior and about the effect of price 
changes on these sensitivities, or 'thresholds'. The resulting demand schedules 
and their interactions with supply show that even in the presence of perfect 
information, profit-maximizing firms and utility-maximizing individuals, un- 
stable, oscillatory and even completely indeterminate market situations may 
result. These outcomes result entirely from the interpersonal effects. 

We make no attempt here to discuss the peculiar features of industrial 
organization that might evolve in attempts to reduce such uncertainties. To 
do so in any detail would be a larger and different project, though one that 
the present models should illuminate. 
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